Skip to main content
Log in

Effect of CPT on the calf thymus Topoisomerase I-mediated DNA breakage-reunion reaction: Optimal conditions for the formation and reversal of the CPT trapped Topoisomerase I cleavable complex

  • Research Articles
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The effects of CPT on the calf thymus Topoisomerase I-mediated DNA breakage-reunion reaction were studied at an enzyme concentration range proper for evidencing, at the same time, both DNA relaxation and DNA cleavage/religation. Some of the requirements and the optimal conditions for the formation and reversal of the CPT-trapped Topoisomerase I-DNA cleavable complex are also characterized. We conclude that:

  1. 1.

    Calf thymus (100 kDa) Topoisomerase I requires, for maximal DNA cleavage activity, specific and characteristic reaction conditions.

  2. 2.

    CPT does not affect these optimal conditions, but only stabilizes the normal enzyme-DNA intermediate. In this way, the drug lowers the religation process, becoming responsible for the relaxation inhibition.

  3. 3.

    The optimum of monovalent salt concentration for cleavable complex formation is found between 30 and 70 mM. These values are lower than those required for the relaxation activity optimum (75–125 mM NaCl).

  4. 4.

    The addition of 0.5 M monovalent salt causes reversal of the reaction, and shifts the equlibrium distribution between cleavable intermediate and closed relaxed DNA in the direction of DNA resealing. Therefore, it is suggested that salt affects the cleavage but not the religation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPT:

camptothecin

DDT:

dithiothreitol

PMSF:

phenyl methane sulphonyl fluoride

SDS:

sodium dodecyl sulfate

Topo I:

Topisomerase I

References

  1. Wang JC (1985) Annu. Rev. Biochem. 54: 665–697

    Google Scholar 

  2. Yang L, Wold MS, Li JJ, Kelly TJ & Liu LF (1987) Proc. Nat. Acad. Sci. U.S.A. 84: 950–954

    Google Scholar 

  3. Zang H, Wang JC & Liu LF (1988) Proc. Nat. Acad. Sci. U.S.A. 85: 1060–1064

    Google Scholar 

  4. Wang JC, Caron PR & Kim RA (1990) Cell 62: 403–406

    Google Scholar 

  5. Hsiang YH, Hertzberg R, Hecht S & Liu LF (1985) J. Biol. Chem 260: 14873–14878

    Google Scholar 

  6. Liu LF (1989) Annu. Rev. Biochem. 58: 351–375

    Google Scholar 

  7. D'Arpa P & Liu LF (1989) Biochem. Biophys. Acta 989: 163–177

    Google Scholar 

  8. Covey J, Jaxel C, Kohn KW & Pommier Y (1989) Cancer Res. 49: 5016–5022

    Google Scholar 

  9. Jaxel C, Kohn KM, Wani MC & Pommier Y (1989) Cancer Res. 49: 1465–1469

    Google Scholar 

  10. Yamashita Y, Kawada S, Fujii N & Nakano H (1991) Biochemistry 30: 5838–5845

    Google Scholar 

  11. Giovannella BC, Stehlin JS, Wall ME, Wani MC, Nicholas AW, Liu LF, Silber R & Potmesil M (1989) Science 246: 1046–1048

    Google Scholar 

  12. Coderoni S, Paparelli M & Gianfranceschi GL (1990) Int. J. Biochem. 22: 737–746

    Google Scholar 

  13. Coderoni S, Paparelli M & Gianfranceschi GL (1990) Mol. Biol. Rep 14: 255–259

    Google Scholar 

  14. Kjieldsen E, Mollerup S, Thomsen B, Bonven BJ, Bolund L & Westergaard O (1988) Mol Biol 202: 333–342

    Google Scholar 

  15. Coderoni S, Paparelli M & Gianfranceschi GL (1990) Mol. Biol. Rep 14: 35–39

    Google Scholar 

  16. Champoux JJ & Aronof R (1989) J. Biol. Chem 264: 1010–1015

    Google Scholar 

  17. Thomsen B, Mollerup S, Bonven BJ, Frank R, Blocker H, Nielson OF & Westergaard O (1987) EMBO J. 6: 1817–1823

    Google Scholar 

  18. Hertzberg RP, Busby RW, Caranfa MJ, Holden KG, Johnson RK, Hecht SM & Kingsbury WD (1990) J. Biol. Chem 265: 19287–19295

    Google Scholar 

  19. Hertzberg PR, Caranfa MJ & Hecht SM (1989) Biochemistry 28: 4629–4638

    Google Scholar 

  20. Holden J, Rolfson D & Low R (1990) Biochem. Biophys. Acta 1049: 303–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coderoni, S., Paparelli, M. & Gianfranceschi, G.L. Effect of CPT on the calf thymus Topoisomerase I-mediated DNA breakage-reunion reaction: Optimal conditions for the formation and reversal of the CPT trapped Topoisomerase I cleavable complex. Mol Biol Rep 17, 129–134 (1993). https://doi.org/10.1007/BF00996220

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00996220

Key words

Navigation