Acta Applicandae Mathematica

, Volume 41, Issue 1–3, pp 123–134 | Cite as

Computation by computer of Lie superalgebra homology and cohomology

  • N. v.d. Hijligenberg
  • G. F. Post


In this paper, we introduce a package to compute homology and cohomology spaces of Lie superalgebras. We describe most of its features and the implementation in REDUCE.

Mathematics subject classifications (1991)

17B55 17B56 17B70 18G35 69J99 

Key words

homology cohomology Lie superalgebra computer algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fuchs, D. B.:Cohomology of Infinite-Dimensional Lie Algebras, Plenum, New York, 1986.Google Scholar
  2. 2.
    Hearn, A. C.:REDUCE User's Manual Version 3.4, RAND, Santa Monica, 1991.Google Scholar
  3. 3.
    v.d. Hijligenberg, N.: Computations and applications of Lie superalgebra cohomology, PhD Thesis, University of Twente, The Netherlands, 1993.Google Scholar
  4. 4.
    v.d. Hijligenberg, N. and Post, G. F.: Defining relations for Lie algebras of vector fields,Indag. Math. N.S. 2 (1991), 207.Google Scholar
  5. 5.
    v.d. Hijligenberg, N., Kotchetkov, Y., and Post, G. F.: Deformations of S(0, n) and H(0, n),Internat. J. Algebra Comput. 3(1) (1993), 57.Google Scholar
  6. 6.
    Leites, D. A.: Cohomology of Lie superalgebras,Func. Anal. Appl. 9 (1975), 75.Google Scholar
  7. 7.
    Roelofs, G. H. M.: The TOOLS-package for REDUCE, Memorandum 942, University of Twente, The Netherlands, 1991.Google Scholar
  8. 8.
    Roelofs, G. H. M. and Gragert, P. K. H.: Implementation of multilinear operators in REDUCE and applications in mathematics, inProc. 1991 Internat. Symp. on Symbolic and Algebraic Computation, 1991, 390.Google Scholar
  9. 9.
    Tripathy, K. C. and Patra, M. K.: Cohomology theory and deformations of Z2-graded Lie algebras,J. Math. Phys. 31 (1990), 2822.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • N. v.d. Hijligenberg
    • 1
  • G. F. Post
    • 1
  1. 1.Department of Applied MathematicsUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations