Lithuanian Mathematical Journal

, Volume 33, Issue 4, pp 385–392 | Cite as

A simple proof of the Bieberbach conjecture

  • Pavel G. Todorov
Article
  • 209 Downloads

Keywords

Simple Proof Bieberbach Conjecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber,Preuss. Akad. Wiss., Phys.-Math. Kl.,138, 940–955 (1916).Google Scholar
  2. 2.
    K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises,Math. Ann.,89, 103–121 (1923).Google Scholar
  3. 3.
    P. R. Garabedian and M. Schiffer, A proof of the Bieberbach conjecture for the fourth coefficient,J. Rational Mech. Anal.,4, 427–465 (1955).Google Scholar
  4. 4.
    R. N. Pederson and M. Schiffer, A proof of the Bieberbach conjecture for the fifth coefficients,Arch. Rational Mech. Anal.,45, 161–193 (1972).Google Scholar
  5. 5.
    R. N. Pederson, A proof of the Bieberbach conjecture for the sixth coefficient,Arch. Rational Mech. Anal.,31, 331–351 (1968).Google Scholar
  6. 6.
    Z. Charzyński and M. Schiffer, A new proof of the Bieberbach conjecture for the fourth coefficient,Arch. Rational. Mech. Anal.,5, 187–193 (1960).Google Scholar
  7. 7.
    P. R. Garabedian, G. G. Ross, and M. Schiffer, On the Bieberbach conjecture for evenn, J. Math. Mech.,14, 975–989 (1965).Google Scholar
  8. 8.
    M. Ozawa, An elementary proof of the Bieberbach conjecture for sixth coefficient,Kodai Math. Semin. Rep.,21, 129–132 (1969).Google Scholar
  9. 9.
    G. Sheng, A simple proof of the Bieberbach conjecture for sixth coefficient,Scientia Sinica,23 (1), 1–15 (1980).Google Scholar
  10. 10.
    M. S. Robertson, A remark on the odd schlicht functions,Bull. Am. Math. Soc.,42, 366–370 (1936).Google Scholar
  11. 11.
    S. Friedland, On a conjecture of Robertson,Arch. Rat. Mech. Anal.,37, 255–261 (1970).Google Scholar
  12. 12.
    I. M. Milin, On the coefficients of univalent functions,Dokl. Akad. Nauk USSR,176 (1967), 1015–1018; English transl.,Soviet Math. Dokl.,8, 1255–1258 (1967).Google Scholar
  13. 13.
    I. M. Milin, Univalent functions and orthonormal systems [in Russian], Nauka Moscow (1971); English transl.,Transl. Math. Monographs, Vol. 49, Am. Math. Soc., Providence, R.I. (1977).Google Scholar
  14. 14.
    A. Ž. Grinshpan, Logarithmic coefficients of functions of classS, Sib. Mat. Zh.,13 (1972), 1145–1157; English transl.,Siberian Math. J.,13, 793–801 (1972).Google Scholar
  15. 15.
    L. de Branges, A proof of the Bieberbach conjecture, preprint E-5-84, Leningrad Branch of Steklov Mathematical Institute (1984).Google Scholar
  16. 16.
    L. de Branges, A proof of the Bieberbach conjecture,Acta Math.,154, 137–152 (1985).Google Scholar
  17. 17.
    C. H. Fitzgerald and Ch. Pommerenke, The de Branges theorem of univalent functions,Trans. Am. Math. Soc.,290, 683–690 (1985).Google Scholar
  18. 18.
    C. H. Fitzgerald and Ch. Pommerenke, The de Branges theorem of univalent functions,Sedica,13 (1) 21–25 (1987).Google Scholar
  19. 19.
    C. H. Fitzgerald, The Bieberbach conjecture: Retrospective, Notices,Am. Soc.,32, 2–6 (1985).Google Scholar
  20. 20.
    J. Korevaar, Ludwig Bieberbach's conjecture and its proof by Louis de Branges,Am. Math. Monthly,93, 505–514 (1986).Google Scholar
  21. 21.
    R. Askey and G. Gasper, Positive Jacobi polynomial sums. II,Am. J. Math.,98, 709–737 (1976).Google Scholar
  22. 22.
    N. D. Kazarinoff, Special functions and the Bieberbach conjecture,Am. Math. Monthly,95, 689–696 (1988).Google Scholar
  23. 23.
    L. Weinstein, The Bieberbach conjecture,International Mathematics Research Notices,5, 61–64 (1991).Google Scholar
  24. 24.
    G. Pick, Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet,Sitzungsber. Akad. Wiss. Wein. Abt. II a,126, 247–263 (1917).Google Scholar
  25. 25.
    M. Schiffer and O. Tammi, The fourth coefficient of a bounded real univalent function,Ann. Acad. Sci. Fenn., Ser. A, I. Math.,354, 1–32 (1965).Google Scholar
  26. 26.
    Z. J. Jakubowski, A. Zielińska, and K. Zyskowska, Sharp estimation of even coefficients of bounded symmetric univalent functions,Ann. Polon. Math.,40, 193–206 (1983).Google Scholar
  27. 27.
    A. W. Godman,Univalent Functions, Vols. I, II, Mariner Publishing Comany, Tampa, Florida (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Pavel G. Todorov

There are no affiliations available

Personalised recommendations