Skip to main content
Log in

Pharmakon-Rezeptor-Interaktionen am Beispiel des Herzglykosidrezeptors der Erythrozytenmembran

  • Leitartikel
  • Published:
Blut Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baker P. F. & Willis J. S.: Binding of the Cardiac Glycosid Ouabain to Intact Cells.J. Physiol. 224, 441 (1972).

    Google Scholar 

  2. Barnard E. A., Wieckwoski J. & Chiu T. H.: Cholinergic Receptor Molecules and Cholinesterase Molecules at Mouse Skeletal Muscle Junctions.Nature.234, 207 (1971).

    Google Scholar 

  3. Cuatrecasas P.: Insulin Receptor of Liver and Fat Cell Membranes.Federat. Proc. 32 (8), 1838 (1973).

    Google Scholar 

  4. Cuatrecasas P.: Membrane Receptors.Ann. Rev. Biochem. 43, 169 (1974).

    Google Scholar 

  5. Dahl J. L. & Hokin L. E.: The Sodium-Potassium Adenosinetriphosphatase.Ann. Rev. Biocbem. 43, 321 (1974).

    Google Scholar 

  6. Desbuquois B. & Laudat M.-H.: Glucagon-reeceptor Interactions in Fat Cell Membranes.Molecular and Cellular Endocrinology 1, 355 (1974).

    Google Scholar 

  7. Dunham P. B. & Gunn R. B.: Adenosine Triphosphatase and Active Cation Transport in Red Blood Cell Membranes.Arch. Int. Med. 129, 241 (1972).

    Google Scholar 

  8. Dunham P. B. & Hoffmann J. F.: Partial Purification of the Ouabain-Binding Component and of Na, K-ATPase from Human Red Cell Membranes.Proc. Nat. Acad. Sci. 66 (3), 936 (1970).

    Google Scholar 

  9. Ehrlich P.: Über den Stand der jetzigen Chemotherapie.Ber. dtsch. chem. Ges. 42, 17 (1909).

    Google Scholar 

  10. Ellory J. C. & Keynes R. D.: Binding of Tritiated. Digoxin to Human Red Cell Ghosts.Nature 221, 776 (1969).

    Google Scholar 

  11. Erdmann E. & Schoner W.: Ouabain-receptor interactions in (Na+ + K+)-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants.Biochem. Biophys. Acta 307, 386 (1973).

    Google Scholar 

  12. Erdmann E. & Schoner W.: Ouabain-receptor interactions in (Na+ + K+)-ATPase preparations. III. On the stability of the Ouabain receptor against physical treatment, hydrolases and SH-reagents.Biochim. Biophys. Acta 330, 302 (1973).

    Google Scholar 

  13. Erdmann E. & Schoner W.: Ouabain-receptor interactions in (Na+ + K+)-ATPase preparations. IV. The molecular structure of different cardioactive steroids and other substances and their affinity to the glycoside receptor.Naunyn-Schmiedeberg's Arch. Pharmacol. 283, 335–356 (1974).

    Google Scholar 

  14. Erdmann E. & Schoner W.: Korrelation der Bindung von Herzglykosiden an ihren Rezeptor und der Hemmung der (Na+ + K+)-aktivierbaren ATPaseklinischen Bedeutung und Anwendungsmöglichkeit.Verh. dtsch. Ges. inn. Med. 80, 1075 (1974).

    Google Scholar 

  15. Erdmann E. & Hasse W.: Quantitative aspects of Ouabain binding to human erythrocyte and cardiac cellmembranes.J. Physiol. 251, 671 (1975).

    Google Scholar 

  16. Fertuck H. C. & Salpeter M. M.: Localization of Acetylcholin Receptor by Labeled-Bungarotoxin Binding at Mouse Motor Endplates.Proc. Nat. Acad. Sci. 71 (4), 1376 (1974).

    Google Scholar 

  17. Garay R. P. & Garrahan P. J.: The Interaction of Sodium and Potassium with the Sodium Pump in Red Cells.J. Physiol. 231, 297 (1973).

    Google Scholar 

  18. Gardner J. D. & Conlon T. P.: The Effects of Sodium and Potassium on Ouabain Binding by Human Erythrocytes.J. Gen. Physiol. 60, 609 (1972).

    Google Scholar 

  19. Gardner J. D., Kiino D. R., Schwartz T. J. & Butler W. P., Jr.: Effects of Digoxin-Specific Antibodies on Accumulation and Binding of Digoxin by Human Erythrocytes.J. Clin. Invest. 52, 1820 (1973).

    Google Scholar 

  20. Gardner J. D. & Kiino D. R.: Ouabain binding and cation transport in human erythrocytes.J. Clin. Invest. 52, 1845 (1973).

    Google Scholar 

  21. Gardner J. D., Klaeveman H. L., Bilezikian J. P. & Aurbach G. D.: Effects of Ouabain on Catecholaminestimulated Sodium Transport in Turkey Erythrocytes.J. Biol. Chem. 249 (2), 516 (1974).

    Google Scholar 

  22. Gardner J. D. & Frantz C.: Effects of Cations on Ouabain Binding by Intact Human Erythrocytes.J. Membrane Biol. 16, 43 (1974).

    Google Scholar 

  23. Gardner J. D., Kiino D. R., Jow, N. & Aurbach G. D.: Effects of Extracellular Cations and Ouabain on Catecholamine-stimulated Sodium and Potassium Fluxes in Turkey Erythrocytes.J. Biol. Chem. 250 (4), 1164 (1975).

    Google Scholar 

  24. Garrahan P. J. & Glynn I. M.: The sensitivity of the sodium pump to external sodium.J. Physiol. 192, 217 (1967).

    Google Scholar 

  25. Glynn I. M.: The action of cardiac glycosides on sodium and potassium movements in human red cells.J. Physiol. 136, 148 (1957).

    Google Scholar 

  26. Glynn I. M. & Karlish S. J. D.: The Sodium Pump.Ann. Rev. Physiol. 37, 13 (1975).

    Google Scholar 

  27. Goldstein A.: Opiate Receptors.Life Sci.14, 615 (1974).

    Google Scholar 

  28. Hanahan D. J.: The Erythrocyte Membrane Variability and Membrane Enzyme Activity.Biochim. Biophys. Acta 300, 319 (1973).

    Google Scholar 

  29. Hoffmann J. F.: The Red Cell Membrane and the Transport of Sodium and Potassium.Amer. J. Med. 41, 666 (1966).

    Google Scholar 

  30. Jørgensen P. L.: Isolation and characterization of the components of the Sodium pump.Quart. Rev. Biophysics. 7, 2, 239 (1975).

    Google Scholar 

  31. Juliano R. L.: The Proteins of the Erythrocyte Membrane.Biochim. Biophys. Acta 300, 341 (1973).

    Google Scholar 

  32. Kaiser G., Quiring K., Gauger D., Palm D., Becker H. & Schoeppe W.: Occurrence of Adenyl Cyclase Activity in Human Erythrocytes.Blut. 29, 115 (1974).

    Google Scholar 

  33. Kasai M. & Changeux J.-P.: In Vitro Excitation of Purified Membrane Fragments by Cholinergic Agonists. III. Comparision of the Dose Curves to Decamethonium with the Corresponding Binding Curves of Decamethonium to the Cholinergic Receptor.J. Membrane Biol. 6, 58 (1971).

    Google Scholar 

  34. Karlin A.: Molecular interactions of the acetylcholine receptor.Federation Proc. 32, 1847 (1973).

    Google Scholar 

  35. Knauf P. A., Proverbio F. & Hoffmann J. P.: Chemical characterization and Pronase susceptibility of the Na:K Pump—Associated Phosphoprotein of Human Red Blood Cells.J. Gen. Physiol. 63, 305 (1974).

    Google Scholar 

  36. Kyte J.: Properties of the two Polypeptides of Sodium- and Potassiumdependent Adenosine Triphosphatase.J. Biol. Chem. 247, 7642 (1972).

    Google Scholar 

  37. Lesniak M. A., Gordon P., Roth J. & Garvin R. J.: Binding of125I-Human Growth Hormone to Specific Receptors in Human Cultured Lymphocytes.J. Biol. Chem. 249 (6), 1661 (1974).

    Google Scholar 

  38. Lin, Shin & Spudich J. A.: Binding of Cytochalasin B to A Red Cell Membrane Protein.Biochem. Biophys. Res Comm. 61, 4, 1471 (1974).

    Google Scholar 

  39. Lin, Shin & Spudich J. A.: Biochemical Studies on the Mode of Action of Cytochalasin.B. J. Biol. Chem. 249 (18), 5778 (1974).

    Google Scholar 

  40. Marchesi V. T. & Palde G. E.: The Localization of Mg-Na-K-Activated Adenosine Triphosphatase on Red Cell Ghost Membranes.J. Cell. Biol. 35, 385 (1967).

    Google Scholar 

  41. Masiak S. J. & D'Angelo G.: Effects of N-Acetylimidazole on Human Erythrocyte ATPase Activity. Evidence for a Tyrosyl Residue at the ATP Binding site of the (Na+ + K+)-Dependent ATPase.Biochim. Biophys. Acta 382, 83 (1975).

    Google Scholar 

  42. Matsui H. & Schwartz A.: Mechanism of cardiac glycoside inhibition of the (Na+ + K+)-ATPase from cardiac tissue.Biochim. Biophys. Acta 151, 655 (1968).

    Google Scholar 

  43. Mircevová L., Mach O. & Simonová A.: ATPase Activity and Morphology of the Erythrocyte Membrane.Folia Haematol. 99, 4, 317 (1973).

    Google Scholar 

  44. Moore W. V. & Wolff J.: Thyroid—stimulating Hormone Binding to Beef Thyroid Membranes.J. Biol. Chem. 249 (19), 6255 (1974).

    Google Scholar 

  45. Mueller T. J. & Morrison M.: The Transmembrane Proteins in the Plasma Membrane of Normal Human Erythrocytes.J. Biol. Chem. 249 (23), 7568 (1974).

    Google Scholar 

  46. Parker J. C. & Welt L. G.: Pathological Alterations of Cation Movements in Red Blood Cells.Arch. Int. Med. 129, 320 (1972).

    Google Scholar 

  47. Patsernak G. W. & Synder S. H.: Opiate Receptor Binding: Effects of Enzymatic Treatment.Molecular Pharmacol. 10, 183 (1974).

    Google Scholar 

  48. Post R. L., Albright C. D. & Dayani K.: Resolution of Pump and Leak and Components of Sodium and Potassium Ion Transport in Human Erythrocytes.J. Gen. Physiol. 50, 1201 (1967).

    Google Scholar 

  49. Sachs J. R.: Interaction of External K, Na and Cardioactive Steroids with the Na-K Pump of the Human Red Blood Cell.J. Gen. Physiol. 63, 123 (1974).

    Google Scholar 

  50. Scatchard G.: The attractions of proteins for small molecules and ions.Ann. N. Y. Acad. Sci. 51, 660 (1949).

    Google Scholar 

  51. Schatzmann H. J.: Herzglykoside als Hemmstoffe für den aktiven Kaliumund Natrium-Transport durch die Erythrocytenmembran.Helv. physiol. pharmacol. Acta 11, 346 (1953).

    Google Scholar 

  52. Schoner W.: Zum aktiven Na+ und K+-Transport durch die Membran tierischer Zellen.Angew. Chem. 23, 947 (1971).

    Google Scholar 

  53. Sen A. K. & Post R. L.: Stochiometry localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte.J. Biol. Chem. 239, 345 (1964).

    Google Scholar 

  54. Sheppard C. W. & Beyl G. E.: Cation Exchange Mammalian Erythrocytes. III. The prolytic Effect of X-Rays on Human Cells.J. Gen. Physiol. 34, 691 (1951).

    Google Scholar 

  55. Skou, J.: The Influence of some Cations on an Adenosine Triphosphatase from Peripheral Nerves.Biochim. Biophys. Acta 23, 394 (1957).

    Google Scholar 

  56. Skou J. C.: Enzymatic basis for active transport of Na+ and K+ across cell membrane.Rev. Physiol. 45, 596 (1965).

    Google Scholar 

  57. Solomon A. K.: The Permeability of the Human Erythrocyte to Sodium and Potassium.J. Gen. Physiol. 36, 57 (1952).

    Google Scholar 

  58. Solomon A. K., Gill T. J. & Gold G.L.: The Kinetics of Cardiac Glycoside Inhibition of Potassium Transport in Human Erythrocytes.J. Gen. Physiol. 40, 2, 327 (1956).

    Google Scholar 

  59. Solomon A. K.: Red Cell Membrane Structure and Ion Transport.Amer. J. Med. 41, 1 (1966).

    Google Scholar 

  60. Titus E. O.: Characterization of Pharmacological Receptors.Naunyn-Schmiedeberg's Arch. Pharmacol. 288, 269 (1975).

    Google Scholar 

  61. Toretti J., Hendler E., Weinstein E., Longnecker R. E. & Epstein F. H.: Functional significance of Na + K-ATPase in the Kidney: effects of ouabain inhibition.Amer. J. Physiol. 222, 1398 (1972).

    Google Scholar 

  62. Venturi G. & Palladini G.: ATPase activity, sodium and potassium content in guinea pig cortex after ouabain treatment in vivo.J. Neurochem. 20, 237 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung der Deutschen Forschungsgemeinschaft (Er 65/1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdmann, E. Pharmakon-Rezeptor-Interaktionen am Beispiel des Herzglykosidrezeptors der Erythrozytenmembran. Blut 32, 61–70 (1976). https://doi.org/10.1007/BF00995933

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00995933

Schlüsselwörter

Navigation