Neurochemical Research

, Volume 20, Issue 9, pp 1041–1048 | Cite as

Bradykinin stimulates phospholipase D in PC12 cells by a mechanism which is independent of increases in intracellular Ca2+

  • Joel Horwitz
  • Brent Passarello
  • Mark Corso


These experiments were designed to learn the role of bradykinin induced changes in intracellular Ca2+ in the activation of phospholipase D activity in PC12 cells. Ionomycin at a concentration of 0.1μM caused an increase in intracellular Ca2+ comparable to bradykinin, but had no effect on phospholipase D activity. Carbachol, ATP, and thapsigargin also increased intracellular Ca2+ but had no effect on phospholipase D activity. Increases in intracellular Ca2+ may be a necessary but not a sufficient factor in the activation of phospholipase D. To investigate this issue, the bradykinin induced increase in intracellular Ca2+ was blocked by preincubating the cells in Ca2+-free media plus EGTA or in media containing the intracellular Ca2+ chelator BAPTA/AM. These preincubations completely blocked the bradykinin induced increase in intracellular Ca2+ but only attenuated the bradykinin mediated activation of phospholipase D. Physiological increases in intracellular Ca2+ apparently do not mediate the effect of bradykinin on phospholipase D.

Key words

Phospholipase D PC12 cells bradykinin Ca2+ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shukla, S., and Halenda, S. 1991. Phospholipase D in cell signalling and its relationship to phospholipase C. Life Sci. 48:851–866.Google Scholar
  2. 2.
    Billah, M. M., and Anthes, J. C. 1990. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem. J. 269:281–291.Google Scholar
  3. 3.
    Exton, J. H. 1990. Signaling through phosphatidylcholine breakdown. J. Biol. Chem. 265:1–4.Google Scholar
  4. 4.
    Thompson, N. T., Bonser, R. W., and Garland, L. G. 1991. Receptor coupled phospholipase D and its inhibition. Trends Pharm. Sci. 12:404–408.Google Scholar
  5. 5.
    Kobayashi, M., and Kanfer, J. N. 1987. Phosphatidylethanol formation via transphosphatidylation by rat brain synaptosomal phospholipase D. J. Neurochem. 48:1597–1603.Google Scholar
  6. 6.
    Wang, P., Anthes, J. C., Siegel, M. I., Egan, R. W., and Billah, M. M. 1991. Existence of cytosolic phospholipase D. The Journal of Biochemistry 266:14877–14880.Google Scholar
  7. 7.
    Mohn, H., Chalifa, V., and Liscovitch, M. 1992. Substrate specificity of neutral phospholipase D from rat brain studied by selective labeling of endogenous synaptic membrane phospholipid in vitro. J. Biol. Chem. 267:11131–11136.Google Scholar
  8. 8.
    Horwitz, J. 1991. Bradykinin activates a phospholipase D specific for phosphatidylcholine in PC12 cells. J. Neurochem. 56:509–517.Google Scholar
  9. 9.
    Kanoh, H., Kanaho, Y., and Nozawa, Y. 1992. Pertussis toxininsensitive G protein mediates carbachol activation of phospholipase D in rat pheochromocytoma PC12 cells. J. Neurochem. 59:1786–1794.Google Scholar
  10. 10.
    Murrin, R. J., and Boarder, M. R. 1992. Neuronal “nucleotide” receptor linked to phospholipase C and phospholipase D? Stimulation of PC12 cells by ATP analogues and UTP. Mol. Pharmacol. 41:561–568.Google Scholar
  11. 11.
    Horwitz, J., and Ricanati, S. 1992. Bradykinin and phorbol dibutyrate activate phospholipase D in PC12 cells by different mechanisms. J. Neurochem. 59:1474–1480.Google Scholar
  12. 12.
    Llahi, S., and Fain, J. N. 1992. Alpha 1-adrenergic receptor-mediated activation of phospholipase D in rat cerebral cortex. J. Biol. Chem. 267:3679–3685.Google Scholar
  13. 13.
    Liscovitch, M. 1989. Phosphatidylethanol biosynthesis in ethanol-exposed NG108-15 neuroblastoma X glioma hybrid cells. J. Biol. Chem. 254:1450–1456.Google Scholar
  14. 14.
    Liscovitch, M., and Eli, Y. 1991. Ca2+ inhibits guanine nucleotide-activated phospholipase D in neural-derived NG108-15 cells. Cell Reg. 2:1011–1019.Google Scholar
  15. 15.
    Kanfer, J. N., and McCartney, D. 1994. Phospholipase D activity of isolated rat brain plasma membranes. FEBS Letters 337:251–254.Google Scholar
  16. 16.
    Okamura, S., and Yamashita, S. 1994. Purification and characterization of phosphatidylcholine phospholipase D from pig lung. J. Biol. Chem. 269:31207–31213.Google Scholar
  17. 17.
    Fisher, S. K., Heacock, A. M., and Agranoff, B. W. 1992. Inositol lipids and signal transduction in the nervous system: an update. J. Neurochem. 58:18–38.Google Scholar
  18. 18.
    Greene, L. A., and Tischler, A. S. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which responds to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.Google Scholar
  19. 19.
    Runyon, R. P., and Haber, A. 1980. Fundamentals of Behavioral Statistics, p. 238. Addison Wesley, Philippines.Google Scholar
  20. 20.
    Dahmer, M. K., and Perlman, R. L. 1988. Insulin and insulin-like growth factors stimulate DNA synthesis in PC12 pheochromocytoma cells. Endocrinology 122:2109–2113.Google Scholar
  21. 21.
    Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.Google Scholar
  22. 22.
    Fasolato, C., Pandiella, A., Meldolesi, J., and Pozzan, T. 1988. Generation of inositol phosphases, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J. Biol. Chem. 263:17350–17359.Google Scholar
  23. 23.
    Rabe, C. S., and Weight, F. F. 1988. Effect of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells. J. Pharm. Exp. Ther. 244:417–422.Google Scholar
  24. 24.
    Vicetini, L. M., Ambrosini, A., Di Virgilio, F., Pozzan, T., and Meldolesi, J. 1985. Muscarinic receptor-induced phosphoinositide hydrolysis at resting cytosolic Ca2+ concentration in PC12 cells. J. Cell Biol. 100:1330–1333.Google Scholar
  25. 25.
    Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R., and Dawson, A. P. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca2+-ATPase. Proc. Natl. Acad. Sci. 87:2466–2470.Google Scholar
  26. 26.
    Kim, W. K., and Rabin, R. A. 1994. Characterization of the purinergic P2 receptors in PC12 cells. J. Biol. Chem. 269:6471–6477.Google Scholar
  27. 27.
    Raha, S., de Souza, L. R., and Reed, J. K. 1993. Intracellular signalling by nucleotide receptors in PC12 pheochromocytoma cells. J. Cellular. Phys. 154:623–630.Google Scholar
  28. 28.
    Reber, B. F., Neuhas, R., and Reuter, H. 1992. Activation of different pathways for calcium elevation by bradykinin and ATP in rat pheochromocytoma (PC12 cells). P. Arch. Eur. J. Physio. 420:213–218.Google Scholar
  29. 29.
    Cockroft, S. 1984. Ca2+-dependent conversion of phosphatidylinositol to phosphatidate in neutrophils stimulated with fMet-Leu-Phe or ionophore A23187. Biochim. Biophys. Acta 795:37–46.Google Scholar
  30. 30.
    Mullmann, T. J., Siegel, M. I., Egan, R. W., and Billah, M. M. 1990. Complement C5a activation of phospholipase D in human neutrophils. A major route to the production of phosphatidates and diglycerides. Journal of Immunology 144:1901–1908.Google Scholar
  31. 31.
    Reinhold, S. L., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. 1990. Activation of human neutrophil phospholipase D by three separable mechanisms. Faseb Journal 4:208–214.Google Scholar
  32. 32.
    Hardy, S. J., Robinson, B. S., Poulos, A., Harvey, D. P., Ferrante, A., and Murray, A. W. 1991. The neutrophil respiratory burst. Responses to fatty acids, N-formylmethionylleucylphenylalanine and phorbol ester suggest divergent signaling mechanisms. Eur. J. Biochem. 198:801–806.Google Scholar
  33. 33.
    Kessels, G. C., Roos, D., and Verhoeven, A. J. 1991. fMet-Leu-Phe-induced activation of phospholipase D in human neutrophils. Dependence on changes in cytosolic free Ca2+ concentration and relation with respiratory burst activation. J. Biol. Chem. 266: 23152–23156.Google Scholar
  34. 34.
    Kanaho, Y., Takahashi, K., Tomita, U., Iiri, T., Katada, T., and Ui, M. 1992. A protein kinase C inhibitor, staurosporine, activates phospholipase D via a pertussis toxin-sensitive GTP-binding protein in rabbit peritoneal neutrophils. J. Biol. Chem. 267:23554–23559.Google Scholar
  35. 35.
    Gelas, P., Von Tscharner, V., Record, M., Baggiolini, M., and Chap, H. 1992. Human neutrophil phospholipase D activation by N-formylmethionyl-leucylphenylalanine reveals a two-step process for the control of phosphatidylcholine breakdown and oxidative burst. Biochem. J. 287:67–72.Google Scholar
  36. 36.
    Kanaho, Y., Nishida A., Nozawa, Y. 1992. Calcium rather than protein kinase C is the major factor to activate phospholipase D in FMLP-stimulated rabbit peritoneal neutrophils. Possible involvement of calmodulin/myosin L chain kinase pathway. J. Immuno. 149:622–628.Google Scholar
  37. 37.
    Lin, P., and Gilfillan, A. M. 1992. The role of calcium and protein kinase C in the IgE-dependent activation of phosphatidylcholine-specific phospholipase D in a rat mast (RBL 2H3) cell line. Eur. J. Biochem. 207:163–168.Google Scholar
  38. 38.
    Pai, J. K., Siegel, M. I., Egan, R. W. and Billah, M. M. 1988. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J. Biol. Chem. 263: 12472–12477.Google Scholar
  39. 39.
    Liu, Y., Geisbuhler, B., and Jones, A. W. 1992. Activation of multiple mechanisms including phospholipase D by endothelin-1 in rat aorta. Am. J. Physiol. 262:C941-C949.Google Scholar
  40. 40.
    Halenda, S. P., and Rehm, A. G. 1990. Evidence for the calcium-dependent activation of phospholipase D in thrombin-stimulated human erythroleukemia cells. Biochem. J. 267:479–483.Google Scholar
  41. 41.
    Wu, H., James-Kracke, M. R., and Halenda, S. P. 1992. Direct relationship between intracellular calcium mobilization and phospholipase D activation in prostaglandin E-stimulated human erythroleukemia cells. Biochem. 31:3370–3377.Google Scholar
  42. 42.
    Huang, R., Kucera, G. L., and Rittenhouse, S. E. 1991. Elevated cytosolic Ca2+ activated phospholipase D in human platelets. J. Biol. Chem. 266:1652–1655.Google Scholar
  43. 43.
    Gustavsson, L., Moehren, G., Torres-Marquez, M. E., Benistant, C., Rubin, R., and Hoek, J. B. 1994. The role of cytosolic Ca2+, protein kinase C, and protein kinase A in hormonal stimulation of phospholipase D in rat hepatocytes. J. Biol. Chem. 269:849–859.Google Scholar
  44. 44.
    el-Moatassim, C., and Dubyak, G. R. 1992. A novel pathway for the activation of phospholipase D by P2z purinergic receptors in BAC1.2F5 macrophages. J. Biol. Chem. 267:23664–23673.Google Scholar
  45. 45.
    Welsh, C. J., Schmeichel, K., Cao, H. T., and Chabbott, H. 1990. Vasopressin stimulates phospholipase D activity against phosphatidylcholine in vascular smooth muscle cells. Lipids 25:675–684.Google Scholar
  46. 46.
    English, D., Taylor, G., and Garcia, J. G. 1991. Diacylglycerol generation in fluoride-treated neutrophils: involvement of phospholipase D. Blood 77:2746–2756.Google Scholar
  47. 47.
    Pfeilschifter, J., and Huwiler, A. 1993. A role for protein kinase C-epsilon in angiotensin II stimulation of phospholipase D in rat renal mesangial cells. FEBS Let. 331:267–71.Google Scholar
  48. 48.
    Cook, S. J., Briscoe, C. P., and Wakelman, M. J. 1991. The regulation of phospholipase D activity and its role in sn-1,2-diradylglycerol formation in bombesin and phorbol 12-myristate 13-acetate-stimulated Swiss 3T3 cells. Biochem. J. 280: 431–438.Google Scholar
  49. 49.
    Pai, J.-K., Dobek, E. A., and Bishop, R. W. 1991. Endothelin-1 activates phospholipase D and thymidine incorporation in fibroblasts overexpressing protein kinase Cβ1. Cell Reg. 2:897–903.Google Scholar
  50. 50.
    Pachter, J. A., Pai, J. K., Mayer-Ezell, R., Petrin, J. M., Dobek, E., and Bishop, W. R. 1992. Differential regulation of phosphoinositide and phosphatidylcholine hydrolysis by protein kinase C-beta 1 overexpression. Effects on stimulation by alpha-thrombin, guanosine 5′-0-(thiotriphosphate), and calcium. J. Biol. Chem. 267:9826–9830.Google Scholar
  51. 51.
    Horwitz, J. 1990. Carbachol increases the production of diacylglycerol from non-inositol containing phospholipids in PC12 cells. J. Neurochem. 54:983–991.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Joel Horwitz
    • 1
  • Brent Passarello
    • 1
  • Mark Corso
    • 1
  1. 1.Department of PharmacologyMedical College of PennsylvaniaPhiladelphia

Personalised recommendations