Skip to main content
Log in

The multipoint Padé table and general recurrences for rational interpolation

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We first review briefly the Newton-Padé approximation problem and the analogous problem with additional interpolation conditions at infinity, which we call multipoint Padé approximation problem. General recurrence formulas for the Newton-Padé table combine either two pairs of Newton-Padé forms or one such pair and a pair of multipoint Padé forms. We show that, likewise, certain general recurrences for the multipoint Padé table compose two pairs of multipoint Padé forms to get a new pair of multipoint Padé forms. We also discuss the possibility of superfast, i.e.,O(n log2 n) algorithms for certain rational interpolation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Antoulas, On recursiveness and related topics in linear systems,IEEE Trans. Automatic Control AC-31 (1986), pp. 1121–1135.

    Google Scholar 

  2. A. C. Antoulas, Rational interpolation and the Euclidean algorithm,Linear Algebra Appl. 108 (1988), pp. 157–171.

    Google Scholar 

  3. A. C. Antoulas, and B. D. O. Anderson, On the scalar rational interpolation problem,IMA J. Math. Control Inform. 3 (1986), pp. 61–88.

    Google Scholar 

  4. B. Beckermann, A reliable method for computing M-Padé approximants on arbitrary staircases,J. Comput. Appl. Math. 40 (1992), pp. 19–42.

    Google Scholar 

  5. B. Beckermann, and G. Labahn, A uniform approach to the fast computation of matrix-type Padé approximants,SIAM J. Matrix Anal. Appl. (to appear).

  6. R. P. Brent, F. G. Gustavson, and C. Y. Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé approximants,J. Algorithms 1 (1980), pp. 259–295.

    Google Scholar 

  7. S. Cabay, M. H. Gutknecht, and R. Meleshko, Stable rational interpolation?, inProceedings MTNS-'93, Regensburg (to appear).

  8. S. Cabay, and G. Labahn, A superfast algorithm for multi-dimensional Padé systems,Numerical Algorithms 2 (1992), pp. 201–224.

    Google Scholar 

  9. S. Cabay, G. Labahn, and B. Beckermann, On the theory and computation of non-perfect Padé-Hermite approximants,J. Comput. Appl. Math. 39 (1992), pp. 295–313.

    Google Scholar 

  10. S. Cabay, and R. Meleshko, A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices,SIAM J. Matrix Anal. Appl. 14 (1993), pp. 735–765.

    Google Scholar 

  11. G. Claessens, On the Newton-Padé approximation problem,J. Approx. Theory 22 (1978), pp. 150–160.

    Google Scholar 

  12. S. C. Cooper, A. Magnus, and J. H. McCabe, On the non-normal two-point Padé table,J. Comput. Appl. Math. 16 (1986), pp. 371–380.

    Google Scholar 

  13. M. Fiedler, Hankel and Loewner matrices,Linear Algebra Appl. 58 (1984), pp. 75–95.

    Google Scholar 

  14. R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the lookahead Lanczos algorithm for non-Hermitian matrices,SIAM J. Sci. Comput. 14 (1993), pp. 137–158.

    Google Scholar 

  15. P.A. Fuhrmann, A matrix Euclidean algorithm and matrix continued fractions,System Control Letters 3 (1983), pp. 263–271.

    Google Scholar 

  16. P. A. Fuhrmann, On the partial realization problem and the recursive inversion of Hankel and Toeplitz matrices,Contemporary Math. 47 (1985), pp. 149–161.

    Google Scholar 

  17. M. A. Gallucci, and W. B. Jones, Rational approximations corresponding to Newton series (Newton-Padé approximants),J. Approx. Theory 17 (1976), pp. 366–392.

    Google Scholar 

  18. W. Gragg, F. Gustavson, D. Warner, and D. Yun, On fast computation of superdiagonal padé fractions,Math. Programming Stud. 18 (1982), pp. 39–42.

    Google Scholar 

  19. W. B. Gragg, The Padé table and its relation to certain algorithms of numerical analysis,SIAM Rev. 14 (1972), pp. 1–62.

    Google Scholar 

  20. P. Graves-Morris, Efficient reliable rational interpolation, inPadé Approximation and its Applications, Amsterdam 1980, M. B. de Bruin and H. van Rossum, eds., Lecture Notes in Mathematics888, Springer-Verlag, 1981, pp. 28–63.

  21. P. R. Graves-Morris, Practical, reliable, rational interpolation,J. Inst. Maths. Applies. 25 (1980), pp. 267–286.

    Google Scholar 

  22. P. R. Graves-Morris, and T. R. Hopkins, Reliable rational interpolation,Numer. Math. 36 (1981), pp. 111–128.

    Google Scholar 

  23. M. H. Gutknecht, Block structure and recursiveness in rational interpolation, inApproximation Theory VII (E. W. Cheney, C. K. Chui, and L. L. Schumaker, eds.), Academic Press, Boston, 1992 (to appear).

    Google Scholar 

  24. M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part II,SIAM J. Matrix Anal. Appl. (to appear).

  25. M. H. Gutknecht, Continued fractions associated with the Newton-Padé table,Numer. Math. 56 (1989), pp. 547–589.

    Google Scholar 

  26. M. H. Gutknecht, The rational interpolation problem revisited,Rocky Mountain J. Math. 21 (1991), pp. 263–280.

    Google Scholar 

  27. M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process, and related algorithms, Part I,SIAM J. Matrix Anal. Appl. 13 (1992), pp. 594–639.

    Google Scholar 

  28. M. H. Gutknecht, Stable row recurrences in the Padé table and generically superfast lookahead solvers for non-Hermitian Toeplitz systems,Linear Algebra Appl. 188/189 (1993), pp. 351–421.

    Google Scholar 

  29. M. H. Gutknecht, and M. Hochbruck, Look-ahead Levinson- and Schur-type recurrences in the Padé table, (in preparation).

  30. M. H. Gutknecht, and M. Hochbruck, Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems,IPS Research Report 93-11, IPS, ETH-Zürich, August 1993.

  31. G. Heinig, and K. Rost,Algebraic Methods for Toeplitz-like Matrices and Operators, Akademie-Verlag, Berlin, Birkhäuser, Basel/Stuttgart, 1984.

    Google Scholar 

  32. U. Helmke, and P. A. Fuhrmann, Bezoutians,Linear Algebra Appl. 122/123/124 (1989), pp. 1039–1097.

    Google Scholar 

  33. L. Kronecker, Zur Theorie der Elimination einer Variabel aus zwei algebraischen Gleichungen,Monatsber. Königl. Preuss. Akad. Wiss. (1888), pp. 535–600.

  34. H. Maehly, and C. Witzgall, Tschebyscheff-Approximationen in kleinen Intervallen II, Stetigkeitssätze für gebrochen rationale Approximationen,Numer. Math. 2 (1960), pp. 293–307.

    Google Scholar 

  35. A. Magnus, Certain continued fractions associated with the Padé table,Math. Z. 78 (1962), pp. 361–374.

    Google Scholar 

  36. J. Meinguet, On the solubility of the Cauchy Interpolation problem, inApproximation Theory (A. Talbot, ed.), Academic Press, 1970, pp. 137–163.

  37. R. J. Meleshko, A stable algorithm for the computation of Padé approximants, PhD thesis, Department of Computing Science, University of Alberta (Canada) (1990).

    Google Scholar 

  38. G. Opitz, Steigungsmatrizen,Z. Ang. Math. Mech. 44 (1964), pp. T52-T54.

    Google Scholar 

  39. B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices,Math. Comp. 44 (1985), pp. 105–124.

    Google Scholar 

  40. M. Van Barel, and A. Bultheel, The “look-ahead” philosophy applied to matrix rational interpolation problems, inProceedings MTNS-'93, Regensburg (to appear).

  41. M. Van Barel, and A. Bultheel, A matrix Euclidean algorithm for minimal partial realization,Linear Algebra Appl. 121 (1989), pp. 674–682.

    Google Scholar 

  42. M. Van Barel, and A. Bultheel, A new approach to the rational interpolation problem,J. Comput. Appl. Math. 32 (1990), pp. 281–289.

    Google Scholar 

  43. M. Van Barel, and A. Bultheel, The computation of non-perfect Padé-Hermite approximants,Numerical Algorithms 1 (1991), pp. 285–304.

    Google Scholar 

  44. M. Van Barel, and A. Bultheel, A new formal approach to the rational interpolation problem,Numer. Math. 62 (1992), pp. 87–122.

    Google Scholar 

  45. D. D. Warner, Hermite Interpolation with Rational Functions, PhD thesis, University of California at San Diego (1974).

  46. H. Werner, A reliable method for rational interpolation, inPadé Approximation and its Applications (L. Wuytack, ed.), Lecture Notes in Mathematics765, Springer-Verlag, 1979, pp. 257–277.

  47. H. Werner, Algorithm 51: A reliable and numerically stable program for rational interpolation in Lagrange data,Computing 31 (1983), pp. 269–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutknecht, M.H. The multipoint Padé table and general recurrences for rational interpolation. Acta Appl Math 33, 165–194 (1993). https://doi.org/10.1007/BF00995487

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00995487

Mathematics subject classifications (1991)

Key words

Navigation