Advertisement

Acta Applicandae Mathematica

, Volume 30, Issue 3, pp 265–285 | Cite as

An analysis of front tracking for chromatography

  • Burton Wendroff
Article

Abstract

We prove that front tracking has a convergent subsequence for the equations of chromatography for initial data with large variation. We show that this is also true for a variant of front tracking which tracks all waves. An example of a computation with the latter is presented.

Mathematics subject classifications (1991)

35L65 35L80 

Key words

Chromatography hyperbolic front tracking Riemann problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bressan, A.: Global solutions of conservation laws by wave-front tracking, Preprint, Mathematics Department, University of Colorado, 1991.Google Scholar
  2. 2.
    Bressan, A.: A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves, Preprint, Mathematics Department, University of Colorado, 1991.Google Scholar
  3. 3.
    Dafermos, C. M.: Polygonal approximations of solutions of the initial-value problem for a conservation law,J. Math. Anal. Appl. 38 (1972), 33–41.Google Scholar
  4. 4.
    DiPerna, R.: Global existence of solutions to nonlinear hyperbolic systems of conservation laws,J. Differential Equations 20 (1976), 187–212.Google Scholar
  5. 5.
    Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations,Comm. Pure Appl. Math. 18 (1965), 95–105.Google Scholar
  6. 6.
    Hedstrom, G. W.: Some numerical experiments with Dafermos' method for nonlinear hyperbolic equations, in K. Ansorge and W. Törnig (eds),Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1972.Google Scholar
  7. 7.
    James, F.: Sur la modélisation mathématique des équilbres diphasiques et des colonnes de chromatographie, These de Doctorate de l'Ecole Polytechnique, 1990.Google Scholar
  8. 8.
    Kuznetsov, N. N.: Several mathematical problems in chromatography,Vychisl. Metod. Programm. 6 (1967), 242–258.Google Scholar
  9. 9.
    LeVeque, R. J.: Large time-step shock capturing techniques for scalar conservation laws,SIAM J. Numer. Anal. 19 (1982), 1091–1109.Google Scholar
  10. 10.
    Rhee, H.-K., Aris, R. and Amundsen, N. R.: On the theory of multicomponent chromatography,Proc. Roy. Soc. London Ser. A 267 (1182) (1970), 419–455.Google Scholar
  11. 11.
    Risebro, N. H.: A front-tracking alternative to the random choice method, Preprint Series, Institute of Mathematics, University of Oslo, 1989.Google Scholar
  12. 12.
    Risebro, N. H. and Tveito, A.: A front tracking method for conservation laws in one dimension, Preprint Series, Institute of Mathematics, University of Oslo, 1990.Google Scholar
  13. 13.
    Risebro, N. H. and Tveito, A.: Front tracking applied to a nonstrictly hyperbolic system of conservation laws, Preprint Series, Institute of Mathematics, University of Oslo, 1990.Google Scholar
  14. 14.
    Serre, D.: Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation,J. Differential Equations 68 (1987), 137–168.Google Scholar
  15. 15.
    Smoller, J.:Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.Google Scholar
  16. 16.
    Swartz, B. K. and Wendroff, B.: Aztec: A front tracking code based on Godunov's method,Appl. Numer. Math. 2 (1986), 385–397.Google Scholar
  17. 17.
    Temple, B.: Degenerate systems of conservation laws,Contemp. Math. 60 (1987), 125–133.Google Scholar
  18. 18.
    Woodward, P. and Colella, P.: The numerical simulation of two dimensional fluid flow with strong shocks,J. Comput. Phys. 54 (1984), 115–173.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Burton Wendroff
    • 1
  1. 1.T-Division, MS B284Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations