Neurochemical Research

, Volume 20, Issue 10, pp 1239–1248 | Cite as

Biosynthesis and compartmentalization of Po, apolipoprotein A-I, and lipids in the myelinating chick sciatic nerve

  • M. Joanne Lemieux
  • Catherine Mezei
  • W. Carl Breckenridge
Original Articles


Myelin deposition in developing chick sciatic nerve is associated with rapid synthesis of lipids, the major myelin protein Po and apo A-I, a major constituent of plasma lipoproteins. In order to understand possible roles of apo A-I in myelin assembly the synthesis and appearance of Po, apo A-I and lipids was studied in an intracellular fraction, an intralamellar fraction thought to be related to, or derived from, myelin and compact myelin from rapidly myelinating sciatic nerve of 1 day chicks. Incorporation with methionine or pulse-chase experiments indicated that initial synthesis of Po occurs in the intracellular fraction followed by movement to the intralamellar fraction and myelin. Incorporation of labelled oleate into phospholipids suggested that initial synthesis occurs in the intracellular and intralamellar fractions with slow movement to myelin. Incorporation of labelled galactose into cerebrosides suggested that initial synthesis occurs partially in myelin with slow loss from this fraction to the intralamellar fraction. However, incorporation of methionine into apo A-I indicated that initial synthesis occurred in the intracellular fraction with some transfer to the intralamellar fraction and secretion of a major portion into the incubation medium. It is concluded that the subcellular distribution of nascent apo A-I is not well coordinated with the distribution of other nascent constitutents of the myelin membrane. The accumulation of nascent Po, phospholipids and cerebrosides in the intralamellar fraction compared to compact myelin suggests that this fraction may play a role as a precursor membrane or as a storage site for assembly of myelin constituents into compact myelin.

Key Words

Apolipoprotein A-I Po avian myelination PNS 



polyacrylamide gel electrophoresis


sodium dodecyl sulphate








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morell, P., Quarles, R. H., and Norton, W. T. 1994. Myelin formation, structure, and biochemistry. Pages 117–143,in Siegel G. J., Agranoff B. W., Albers R. W., Molinoff P. B. (eds): “Basic neurochemistry: Molecular, Cellular, and Medical Aspects.” 5th Ed. New York: Raven Press.Google Scholar
  2. 2.
    Herschkowitz, N., McKhann, G. M., Saxena, S., and Shooter, E. M. 1968. Characterization of sulphatide-containing lipoproteins in rat brain. J. Neurochem. 15:1181–1188.Google Scholar
  3. 3.
    Benjamins, J. A. and McKhann, G. M. 1973. Properties and metabolism of soluble lipoproteins containing choline and ethanolamine phospholipids in rat brain. J. Neurochem. 20:1121–1129.Google Scholar
  4. 4.
    Brammer, M. J. 1978. The protein-mediated transfer of lecithin to sub-fractions of mature and developing rat myelin. J. Neurochem. 31:1435–1440.Google Scholar
  5. 5.
    Koul, O., Singh, I., and Jungalwala, F. B. 1988. Synthesis and transport of cerebrosides and sulfatides in rat brain during development. J. Neurochem. 50:580–588.Google Scholar
  6. 6.
    Brown, M. C., Moreno, M. B., Bongarzone, E. R., Cohen, P. D., Soto, E. F. and Pasquini, J. M. 1993. Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. J. Neurosci. Res. 35:402–408.Google Scholar
  7. 7.
    Gould, R. M. 1977. Incorporation of glycoproteins into peripheral nerve myelin. J. Cell Biol. 75:326–328.Google Scholar
  8. 8.
    Agrawal, H. C., Banik, N. L., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spohn, M. 1970. The identity of a myelin-like fraction isolated from developing brain. Biochem. J. 120:635–642.Google Scholar
  9. 9.
    Fischer, C. A., and Morell, P. 1974. Turnover of proteins in myelin and myelin-like material of mouse brain. Brain. Res. 74:51–65.Google Scholar
  10. 10.
    Waehneldt, T. V. 1978. Protein heterogeneity in rat CNS myelin subfractions. Adv. Exp. Med. Biol. 100:117–133.Google Scholar
  11. 11.
    LeBlanc, A. C., Foldvari, M., Spencer, D. F., Breckenridge, W. C., Fenwick, R. G., Williams, D. L., and Mezei, C. 1989. The apolipoprotein AI gene is actively expressed in the rapidly myelinating avian peripheral nerve. J. Cell Biol. 109:1245–1256.Google Scholar
  12. 12.
    Lemieux, M. J., Breckenridge, W. C., and Mezei, C. 1993. Apolipoprotein A-I containing lipoprotein particles may serve as lipid transporters in the avian peripheral nerve. J. Neurochem. 61 Supp. S194B.Google Scholar
  13. 13.
    Mezei, C., Lemieux, M. J., and Breckenridge, W. C. 1994. Myelinogenesis and apo A-I associated lipids in the avian PNS. J. Neurochem. 62 Suppl. Abst. S54C.Google Scholar
  14. 14.
    Lemieux, J., Giannoulis, S., Breckenridge, W. C., and Mezei, C. 1995a. Post-translational modifications of apolipoprotein A-I and Po proteins in the avian peripheral nerve. Neurochem. Res. 20: 25–34.Google Scholar
  15. 15.
    Lemieux, M. J., Mezei, C., and Breckenridge, W. C. 1995b. Biosynthesis of apolipoprotein A-I in the avian sciatic nerve during development. Submitted.Google Scholar
  16. 16.
    Hu, Y. W. and Mezei, C. 1971. RNA synthesis in the peripheral nerve in the chick during development. Can. J. Biochem. 49:320–327.Google Scholar
  17. 17.
    Nunn, D. J., LeBlanc, A. C., and Mezei, C. 1987. A 42K protein of chick sciatic nerve is immunologically related to PO protein of periperal nerve myelin. Neurochem. Res. 12:377–384.Google Scholar
  18. 18.
    Blue, M.-L., Ostapchuk, P., Gordon, J. S., and Williams, D. L. 1982. Synthesis of apolipoprotein AI by peripheral tissues of the rooster. J. Biol. Chem. 257:11151–11159.Google Scholar
  19. 19.
    LeBlanc, A. C., Poduslo, J., and Mezei, C. 1987. Gene expression in the presence and absence of myelin assembly. Mol. Brain Res. 2:57–67.Google Scholar
  20. 20.
    Nunn, D. J. and Mezei, C., 1984. Solid-phase immunoassay of Po glycoprotein of peripheral nerve myelin. J. Neurochem. 42:158–165.Google Scholar
  21. 21.
    Bonner, W. M., and Laskey, R. A. 1974. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46:83–88.Google Scholar
  22. 22.
    Oulton, M. R. and Mezei, C. 1976. Characterization of myelin of chick sciatic nerve during development. J. Lipid Res. 17:167–175.Google Scholar
  23. 23.
    Bignami, A. M., Dahl, D., Nguyen, B. T., and Crosby, C. J. 1981. The fate of axonal debris in Wallerian degeneration of rat optic and sciatic nerves. J. Neuropathol. Exp. Neurol. 40:537–550.Google Scholar
  24. 24.
    Poduslo, J. F. 1993. Regulation of myelin gene expression in the peripheral nervous system. Pages 282–289,in Dyck, P. J., Thomas, P. K., Griffin, J. W., Low, P. A. and Poduslo, J. F., (eds): Peripheral Neuropathies, 3rd ed.Google Scholar
  25. 25.
    Trapp, B. D., Itoyama, Y., Sternberger, N. H., Quarles, R. H., and deF. Webster, H. 1981. Immunocytochemical localization of Po protein in Golgi complex membranes and myelin of developing rat Schwann cells. J. Cell. Biol. 90:1–6.Google Scholar
  26. 26.
    Baron, P., Shy, M., Honda, H., Sessa, M., Kamholz, J., and Pleasure, D. 1994. Developmental expression of PO mRNA and PO protein in the sciatic nerve and the spinal nerve roots of the rat. J. Neurocytol. 23:249–257.Google Scholar
  27. 27.
    Linington, C., and Waehneldt, T. V. 1981. The in vivo synthesis of myelin proteins in rabbit sciatic nerve. Neurochem. Internat. 3: 385–395.Google Scholar
  28. 28.
    Rapaport, R. N., and Benjamins, J. A. 1981. Kinetics of entry of Po protein into peripheral nerve myelin. J. Neurochem. 37:164–171.Google Scholar
  29. 29.
    Vance, D. 1985. Phospholipid metabolism in eukaryotes. Pages 243–270,in Vance, D. and Vance, J. E. (eds.): Biochemistry of lipids and membranes Benjamin/Cummings Pub. Co.Google Scholar
  30. 30.
    Mezei, C. 1993. Myelination in the peripheral nerve during development. Pages 267–281,in Dyck P. J., Thomas P. K., Griffin J. W., Low PA, Poduslo J. F., (eds.): Peripheral Neuropathies, 3rd ed.Google Scholar
  31. 31.
    Yao, J. K. 1989. Metabolism of peripheral nerve monogalacto-sylceramides. Lipids 24:837–841.Google Scholar
  32. 32.
    Townsend, L. E., Benjamins, J. A. and Skoff, R. P. 1984. Effects of nonensin and colchicine on myelin galactolipids. J. Neurochem. 43:139–145.Google Scholar
  33. 33.
    Cuzner, L. M. and Davison, A. N. 1968. The lipid composition of rat brain myelin and subcellular fraction during development. Biochem. J. 106:29–34.Google Scholar
  34. 34.
    Agranoff, B. W. and Hajra, A. K. 1994. Lipids. Pages 97–116,in Siegel G. J., Agranoff B. W., Albers, R. W., Molinoff P. B. (eds): Basic Neurochemistry: Molecular Cellular, and Medical Aspects, 5th. ed. New York: Raven Press.Google Scholar
  35. 35.
    Costantino-Ceccarini, E. and Suzuki, K. 1975. Evidence for the presence of UDP-galactose: ceramide galactosyltransferase in rat myelin. Brain Res. 93:358–362.Google Scholar
  36. 36.
    Koul, O., Chou, K. H. and Jungalwala, F. B. 1980. UDP-galactose-ceramide galactosyltransferase in rat brain myelin subfractions during development. Biochem. J. 186:959–969.Google Scholar
  37. 37.
    Ledeen, R. W. 1984. Lipid-metabolizing enzymes of myelin and their relation to axon. J. Lipid Res. 25:1548–1554.Google Scholar
  38. 38.
    Yahara, S., Singh, I. and Kishimoto, Y. 1980. Cerebroside and cerebroside III-sulfate in brain cytosol. Evidence for their involvement in myelin assembly. Biochim. Biophys. Acta. 619:177–185.Google Scholar
  39. 39.
    Yao, J. K. and Poduslo, J. F. 1988. Biosynthesis of neutral glucocerebroside homologues in the absence of myelin assembly after nerve transection. J. Neurochem. 50:630–638.Google Scholar
  40. 40.
    Yao, J. K., Windebank, A. J., Poduslo, J. F., and Yoshino, J. E. 1990. Axonal regulation of Schwann cell glycolipid biosynthesis. Neurochem. Res. 15:279–282.Google Scholar
  41. 41.
    Yao, J. K. and Yoshino, J. E. 1994. Association of glucocerebroside homolog biosynthesis with Schwann cell proliferation. Neurochem. Res. 19:31–35.Google Scholar
  42. 42.
    Johnson, W. J., Malhberg, F. H., Rothblat, G. H., and Philips, M. 1991. Cholesterol transport between cell and high-density lipoproteins. Biochim. Biophys. Acta. 1085:273–298.Google Scholar
  43. 43.
    Mendez, A., Oram, J. F. and Bierman, E. L. 1991. Protein kinase C as a mediator of high density lipoprotein receptor dependent efflux of intracellular cholesterol. J. Biol. Chem. 266:10104–10111.Google Scholar
  44. 44.
    Thomas, P. K., Berthold, C. H. and Ochoa, J. 1993. Microscopic anatomy of the peripheral nervous system. Pages 28–91,in Dyck, P. J., Thomas, P. K., Griffin, J. W., Low, P. A. and Poduslo, J. F., (eds.): Peripheral Neuropathies, 3rd ed.Google Scholar
  45. 45.
    Boyles, J. K., Zoellner, C. D., Anderson, L. J., Kosik, L. M., Pitas, R. E., Weisgraber, K. H., Hui, D. Y., Mahley, R. W., Gebicke-Haerter, P. J., Ignatius, M. J., and Shooter, E. M. 1989. A role for apolipoprotein E, apolipoprotein AI and low density receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J. Clin. Invest. 83:1015–1031.Google Scholar
  46. 46.
    Mockel, B., Zinke, H., Flach, R., Weib, B., Weiler-Butter, H., and Gassen, H. G. 1994. Expression of apolipoprotein A-I in porcine endothelium in vitro. J. Neurochem. 62:788–798.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • M. Joanne Lemieux
    • 1
  • Catherine Mezei
    • 1
  • W. Carl Breckenridge
    • 1
  1. 1.Department of BiochemistryDalhousie UniversityHalifaxScotia

Personalised recommendations