Skip to main content
Log in

Effect of prenatal treatment with methylazoxymethanol on carbachol-, norepinephrine- and glutamate-stimulated phosphoinositide metabolism in the neonatal, young, and adult offspring

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Carbachol-, norepinephrine- and glutamate-stimulated phosphoinositide metabolism was investigated in the neonatal, young and adult cerebral cortex slices of rats prenatally treated with methylazoxymethanol (MAM) on gestational day 15 (GD15) or GD19. In rat offspring treated on GD15 there was a significant reduction in the accumulation of [3H]inositol phosphates induced by carbachol and a significant increase in the accumulation of [3H]inositol phosphates induced by norepinephrine on day 7, whereas no changes were observed at the other ages. No significant changes, on the other hand, were observed for glutamate-stimulated phosphoinositide metabolism in GD15 treated rats and for carbachol-, norepinephrine- and glutamate-stimulated phosphoinositide metabolism in animals treated on GD19 at any of the different ages evaluated. These results indicate that treatment with MAM on GD15, which results in a marked microencephaly, causes a marked alteration of muscarinic and α1-adrenergic receptor-stimulated phosphoinositide metabolism during brain development and that these alterations undergo adaptive changes in the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnston, M. V., and Coyle, J. T. 1982. Cytotoxic lesions and the development of transmitter system. Trends Neurosci. 5:153–156.

    Google Scholar 

  2. Johnston, M., Carman, A. B., and Coyle, J. T. 1981. Effects of fetal treatment with methylazoxymethanol acetate at various gestational dates on the neurochemistry of the adult neocortex of the rat. J. Neurochem. 36:124–128.

    Google Scholar 

  3. Balduini, W., Cimino, M., Lombardelli, G., Abbracchio, M. P., Peruzzi, G., Cecchini, T., Gazzanelli, G. C., and Cattabeni, F. 1986. Microencephalic rats as a model for cognitive disorders. Clin. Neuropharm. 9:S8-S18.

    Google Scholar 

  4. Balduini, W., Lombardelli, G., Peruzzi, G., and Cattabeni, F. 1991. Treatment with methylazoxymethanol at different gestational days: physical, reflex development and spontaneous activity in the offspring. Neuro Toxicology. 12:179–188.

    Google Scholar 

  5. Balduini, W., Elsner, J., Lombardelli, G., Peruzzi, G., and Cattabeni, F. 1991. Treatment with methylazoxymethanol at different gestational days: two-way shuttle box avoidance and residential maze activity in rat offspring. Neuro Toxicology. 12:677–686.

    Google Scholar 

  6. Jonsson, G., Hallman, H. 1982. Effects of prenatal methylazoxymethanol treatment on the development of central monoamine neurons. Dev. Brain Res. 2, 513–530.

    Google Scholar 

  7. Balduini, W., Abbracchio, M. P., Lombardelli, G., and Cattabeni, F. 1984. Loss of intrinsic striatal neurons after methylazoxymethanol acetate treatment in pregnant rats. Dev. Brain Res. 15:133–136.

    Google Scholar 

  8. Johnston, M. V. and Coyle, J. T. 1980. Ontogeny of neurochemical markers for noradrenergic, GABAergic and cholinergic neurons in neocortex lesioned with methylazoxymethanol acetate. J. Neurochem. 34, 1429–1441.

    Google Scholar 

  9. Sanberg, P. R., Pevsner, J., Autuono, P. G., and Coyle, J. T. 1985. Fetal methylazoxymethanol acetate-induced lesions cause reductions in dopamine receptor-mediated catalepsy and stereotypy. Neuropharmacol. 11:1057–1062.

    Google Scholar 

  10. Beaulieu, M., and Coyle, J. T. 1982. Fetally-induced noradrenergic hyperinnervation of cerebral cortex results in persistent down-regulation of beta-receptors. Dev. Brain Res. 4:491–494.

    Google Scholar 

  11. Balduini, W., Lombardelli G., Peruzzi, G., and Cattabeni, F. 1992. Cholinergic hyperinnervation in the cerebral cortex of microencephalic rats does not result in muscarinic receptor down-regulation or in alteration of receptor-stimulated phosphoinositide metabolism. Neurochem. Res. 17:761–766.

    Google Scholar 

  12. Berridge, M. J., Downes, C. P. and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206:587–595.

    Google Scholar 

  13. Balduini, W., Murphy, S. D., and Costa, L. G. 1987. Developmental changes in muscarinic receptor-stimulated phosphoinositide metabolism in rat brain. J. Pharmacol. Exp. Ther. 241:421–427.

    Google Scholar 

  14. Balduini, W. and Costa, L. G. 1989. Effects of ethanol on muscarinic receptor-stimulated phosphoinositide metabolism during brain development. J. Pharmacol. Exp. Ther. 250:541–547.

    Google Scholar 

  15. Brown, E., Kendall, D. A., and Nahorski, S. R. 1984. Inositol phospholipid hydrolysis in rat cerebral cortex slices. I. Receptor characterization. J. Neurochem. 42:1379–1387.

    Google Scholar 

  16. Gurwitz, D., and Sokolowsky, M. 1987. Dual pathways in muscarinic receptor stimulation of phosphoinositide hydrolysis. Biochemistry 26, 633–638.

    Google Scholar 

  17. Benfenati, F., and Guardabasso, V. 1985. In: Principles and Methods in Receptor Binding, F. Cattabeni and S. Nicosia (Eds.) NATO ASI series vol. 72, Plenum Press, New York, p. 41.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  19. Snedecor, G. W., and Cochran, W. G. 1980. The Iowa State University Press, Ames, IA.

  20. Balduini, W., Murphy, S. D., and Costa, L. G. 1990. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats. J. Pharmacol. Exp. Ther. 253:573–579.

    Google Scholar 

  21. Candura S. M., Tonini M., Baiardi P., Manzo, L., and Costa, L. G. 1995. Heterogeneity of cholinergic muscarinic receptors coupled to phosphoinositide metabolism in immature rat brain. Dev. Brain Res. 86:134–142.

    Google Scholar 

  22. Balduini W., Cimino M., Renò, F., Marini, P., Princivalle, A., and Cattabeni, F. 1993. Effects of postnatal or adult chronic acetylcholinestarase inhibition on muscarinic receptors, phosphoinositide turnover and m1 mRNA expression. Eur. J. Pharmacol.-Environmental Toxicology and Pharmacology Section 248:281–288.

    Google Scholar 

  23. Ashkenazi, A., Dramachandran, J., and Capon, D. J. 1989. Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature 340, 146–150.

    Google Scholar 

  24. Eriksdotter-Nilsson, M., Jonsson, G., Dahl, D., and Bjorklund, H. 1986. Astroglial development in microencephalic rat brain after fetal methylazoxymethanol treatment. J. Dev. Neurosci. 4, 353–362.

    Google Scholar 

  25. Lauder, J. M. 1993. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 16, 233–240.

    Google Scholar 

  26. Hanley, M. R. 1989. Mitogenic neurotransmitters. Nature 340, 97.

    Google Scholar 

  27. Meier, E., Hertz, L., and Schousboe, A. 1991. Neurotransmitters as developmental signals. Neurochem. Int. 19, 1–15.

    Google Scholar 

  28. Kater, S. B., Mattson, M. P., Cohan, C., and Connor, J. 1988. Calcium regulation of the neuronal growth cone. Trends Neurosci. 11, 315–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balduini, W., Lombardelli, G., Peruzzi, G. et al. Effect of prenatal treatment with methylazoxymethanol on carbachol-, norepinephrine- and glutamate-stimulated phosphoinositide metabolism in the neonatal, young, and adult offspring. Neurochem Res 20, 1211–1216 (1995). https://doi.org/10.1007/BF00995385

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00995385

Key Words

Navigation