Uptake of 75-selenium into the central nervous system of the rat

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

These experiments have investigated selenium movement between blood and the CNS in anaesthetized rats. Each animal was anaesthetized and the left femoral blood vessels cannulated for blood withdrawal and solute infusion. Each rat received 75-Se as sodium selenite infused in normal saline and experiments lasted between 5 minutes and 5 hours during which blood samples were periodically taken. At termination, the CNS was removed, dissected and analysed with the plasma samples for 75-Se radioactivity by γ-counting. Data were analyzed by multiple-time uptake analysis. Results showed unidirectional uptake of 75-Se into the CNS and some regional differences were found. On average the CNS influx rate constant (Kin) was about 7±1×10−5 ml/min/g. This indicates that the 75-Se most likely entered the CNS in a protein-bound form.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Peters, S., Koh, J., and Choi, D. W. 1987. Zinc selectively blocks the action of N-Methyl-D-Aspartate on cortical neurons. Science. 236:589–593.

    Google Scholar 

  2. 2.

    Xie, X. and Smart, T. 1991. A physiological role for endogenous zinc in rat hippocampal synaptic transmission. Nature 349:521–524.

    Google Scholar 

  3. 3.

    Morris, C. M., Candy, J. M., Keith, A. B., Taylor, G., Pullen, R. G. L., Bloxham, C., Gocht, A., Edwardson, J. A. 1992b. Brain Iron Homeostasis. J. Inorg. Biochem. 47:257–265.

    Google Scholar 

  4. 4.

    Jenner, P. 1991. Oxidative stress as a cause of Parkinson's disease. Acta. Neurol. Scand. 136:6–15.

    Google Scholar 

  5. 5.

    Liccione, J. J. and Maines, M. 1988. Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J. Pharmacol. Experi. Ther. 247:156–161.

    Google Scholar 

  6. 6.

    Candy, J., Oakey, A., Pullen, R. G. L., Morris, C., Taylor, G., Chalker, P., Moon, D., Bishop, H., Edwardson, J. M. 1991. Trace elements and the pathogenesis of Alzheimer's disease. In:Current Approaches to Alzheimer's Disease. Eds. Malkin, J., Rossor, M. N. Duphar Publications, London.

    Google Scholar 

  7. 7.

    Dedman, J., Treffry, A., Candy, J., Taylor, G., Morris, C., Bloxham, C., Perry, R., Edwardson, J., Harrison, M. 1992. Iron and aluminium in relation to brain ferritin in normal individuals and Alzheimer's-disease and chronic renal-dialysis patients. J. Biochem. 287:509–514.

    Google Scholar 

  8. 8.

    Corrigan, F. M., Reynolds, G. P., and Ward, N. I. 1991. Reductions of zinc and selenium in brain in Alzheimer's disease. Trace Elements in Med. 8:1–5.

    Google Scholar 

  9. 9.

    Dexter, D. T., Sian, J., Jenner, P., Marsden, C. D. 1993. Implications of alterations in trace element levels in brain in Parkinson's disease and other neurological disorders affecting the basal ganglia. Adv. Neurol. 60:273–281.

    Google Scholar 

  10. 10.

    Ganrot, P. O. 1986. Metabolism and possible health effects of aluminium. Env. Health. Persp. 65:363–441.

    Google Scholar 

  11. 11.

    Kiss, T., and Ospinko, O. N. 1994. Toxic effects of heavy metals on ionic channels. Pharmacol. Rev. 46:245–265.

    Google Scholar 

  12. 12.

    Riederer, P., Sofic, E., Rausch, W., Schmidt, B., Reynolds, G., Jellinger, K., Youdim, M. 1989. Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J. Neurochem. 52:515–520.

    Google Scholar 

  13. 13.

    Ben-Shachar, D., Riederer, P., Youdim, M. B. H. 1991. Iron-Melanin interaction and lipid peroxidation: implications for Parkinson's disease. J. Neurochem. 57:1609–1614.

    Google Scholar 

  14. 14.

    Sengstock, G. J., Olanow, C. W., Dunn, A. J., Arendash, G. W. 1992. Iron induces degeneration of nigrostriatal neurons. Brain Res. Bull. 28. 645–649.

    Google Scholar 

  15. 15.

    Clark, L. C. and Combs, G. F. 1986. Selenium compounds and the prevention of cancer: Research needs and public health implications. J. Nutr. 116:170–173.

    Google Scholar 

  16. 16.

    Chen, X., Yang, G., Chen, J., Chen, X., Wen, Z., and Ge, K. 1980. Studies on the relations of selenium and Keshan disease. Biol. Trace Element Res. 2:91–107.

    Google Scholar 

  17. 17.

    Mo, D. X. 1987. Pathology of selenium deficiency in Kashin-Beck disease. In:Selenium in Bology and Medicine. Eds; Combs, G. F., Spallholz, J. E., Levander, O. A., Oldfield, J. AVI-Nostrand. New York.

    Google Scholar 

  18. 18.

    Castano, A., Cano, J., Machado, A. 1993. Low selenium diet affects monoamine turnover differentially in substantia nigra and striatum. J. Neurochem. 57:1302–1307.

    Google Scholar 

  19. 19.

    Anneren, G., Gebre-Medhin, M., Gustavson, K. 1989. Increased plasma and erythrocyte selenium concentrations but decreased erythrocyte glutathione peroxidase activity after selenium supplementation in children with Down Syndrome. Acta. Paediatr. Scand. 78:879–884.

    Google Scholar 

  20. 20.

    Schofield, M. and Pullen, R. G. L. 1994. Brain uptake of selenite in the anaesthetised rat. J. Physiol. 408:15P.

    Google Scholar 

  21. 21.

    Glowinski, J. and Iversen, L. 1966. The disposition of 3-H norepinephrine, 3-H dopamine and 3-H DOPA in various regions of the brain. J. Neurochem. 13:655–669.

    Google Scholar 

  22. 22.

    Patlak, C. S., Blasberg, R. G., Fenstermacher, J. 1983. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cerb. Blood flow and Metab. 3:1–7.

    Google Scholar 

  23. 23.

    Butler, J., Zachara, B., and Whanger, P. 1992. Further refinement for the determination of the distribution of selenium between selenoprotein-P, glutathione peroxidase and albumin. FASEB. 6: 1398.

    Google Scholar 

  24. 24.

    Deagen, J. T., Butler, J. A., Zachara, B. A., Whanger, P. D. 1993. Determination of the distribution of selenium between glutathione peroxidase, selenoprotein-P and albumin in plasma. Analyt. Biochem. 208:176–181.

    Google Scholar 

  25. 25.

    Burk, R. F. and Hill, K. E. 1992. Some properties of selenoprotein-P. Biol. Trace Element Res. 33:151–153.

    Google Scholar 

  26. 26.

    Zachara, B. A. 1992. Mammalian selenoproteins. J. Trace elements and electrolytes in health and disease. 6:137–151.

  27. 27.

    Read, R., Bellew, T., Yang, J. G., Hill, K. E., Palmer, I. S., Burk, R. F. 1990. Selenium and amino-acid composition of selenoprotein-P, the major selenoprotein in rat serum. J. Biol. Chem. 265: 17899–17905.

    Google Scholar 

  28. 28.

    Wilson, D. S., and Tappel, A. L. 1993. Binding of selenoprotein-P to cell membranes. J. Inorgan. Chem. 51:707–714.

    Google Scholar 

  29. 29.

    Zi-jian, W., Jie, Z., An, P. 1992. Metabolic differences and similarities of selenium in blood and brain of the rat following the administration of different selenium compounds. Biol. Trace Element Res. 33:135–143.

    Google Scholar 

  30. 30.

    Oldendorf, W. H. 1971. Brain uptake of radio-labelled amino-acids, amonio-acids, amines and hexoses after arterial injection. Amer. J. Physiol. 221:1629–1639.

    Google Scholar 

  31. 31.

    Gronbaek, H., and Thorlacius-Ussing, O. 1992. Selenium in the central nervous system of rats exposed to 75-selenium. Biol. Trace Element Res. 35:119–127.

    Google Scholar 

  32. 32.

    Trapp, G. A., and Millian, J. 1975. The distribution of 75-Se in brains of seleneium-defficient rats. J. Neurochem. 24:593–595.

    Google Scholar 

  33. 33.

    Clausen, J. 1991. Uptake and distribution in the rat of organic and inorganic selenium. Biol. Trace Element Res. 28:39–45.

    Google Scholar 

  34. 34.

    Larsen, N., Pakkenberg, A., Damsgaard, E., Heydorn, K. 1979. Topographical distribution of arsenic, manganese and selenium in the normal human brain. J. Neurol. Sci. 42:407–416.

    Google Scholar 

  35. 35.

    Prohaska, J. and Ganther, H. 1976. Selenium and glutathione peroxidase in rat brain. J. Neurochem. 27:1379–1387.

    Google Scholar 

  36. 36.

    Pullen, R. G. L., Candy, J. M., Morris, C. M., Taylor, G., Keith, A., Edwardson, J. A., 1990. Gallium-67 as a potential marker for aluminium transport in rat brain: implications for Alzheimer's disease. J. Neurochem. 55:251–259.

    Google Scholar 

  37. 37.

    Morris, C. M., Keith, A. B., Edwardson, J. A., Pullen, R. G. L. 1992. Uptake and distribution of iron and transferrin in the adult rat brain. J. Neurochem. 59:300–306.

    Google Scholar 

  38. 38.

    Brabury, M. W. B. 1992. Physiology and Pharmacology of the blood-brain barrier. Springer-Verlag, Cermany.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pullen, R.G.L., Schofield, M., Markham, A. et al. Uptake of 75-selenium into the central nervous system of the rat. Neurochem Res 20, 1141–1146 (1995). https://doi.org/10.1007/BF00995376

Download citation

Key Words

  • 75-Selenium
  • blood-brain-barrier
  • central nervous system
  • rat