Neurochemical Research

, Volume 20, Issue 1, pp 101–105 | Cite as

Effects of repeated injection of cyclosporin A on pentylenetetrazol-induced convulsion and cyclophilin mRNA levels in rat brain

  • Masato Asanuma
  • Norio Ogawa
  • Sakiko Nishibayashi
  • Yoichi Kondo
  • Akitane Mori
Original Articles


To investigate the relationship between the immune system and convulsions in an animal model, we examined the effects of repeated administration with the immunosuppressant cyclosporin A on pentylenetetrazol (PTZ)-induced convulsions and the changes in the mRNA expression of its binding protein cyclophilin in the rat brain. The consecutive administration of cyclosporin A (5 mg/kg s.c., 14 days) significantly aggravated the severity of convulsions induced with PTZ 75 mg/kg i.p. Furthermore, it down-regulated the levels of cyclophilin mRNA in several brain regions and inhibited the PTZ-induced increase of hippocampal cyclophilin mRNA. Compared with the group without PTZ pretreatment or the group treated with chronic vehicle administration after the PTZ-preinjection, chronic cyclosporin A administration after the initial injection of PTZ apparently aggravated convulsions after the second PTZ injection. Interestingly, the increase in hippocampal cyclophilin mRNA observed after a single PTZ injection was not found after the second PTZ injection in the group with PTZ pretreatment. Therefore, these findings suggest that cyclosporin A administered peripherally can affect the central nervous system, and that an immune response associated with the first convulsive episode plays a key role in severity during subsequent attacks.

Key Words

Cyclosporin A pentylenetetrazol convulsion seizures cyclophilin rat brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qu, Z. P. 1991. Auto-cholinergic synapse dysfunction in patients with generalized epileptic seizures. A preliminary report. Chung Hua Shen Ching Ching Shen Ko Tsa Chih 24:160–161 [in Chinese, English abstract].Google Scholar
  2. 2.
    Bouma, P. A. 1992. Determining the prognosis of childhood epilepsies by establishing immune abnormalities. Clin. Neurol. Neurosurg. 94 (Suppl.):S54–56.Google Scholar
  3. 3.
    Dow, L. W., Raimondi, S. C., Culbert, S. J., Ochs, J., Kennedy, W., and Pinkel, D. P. 1991. Response to alpha-interferon in children with Philadelphia chromosome-positive chronic myelocytic leukemia. Cancer 68:1678–1684.Google Scholar
  4. 4.
    Shiozawa, S., Kuroki, Y., Kim, M., Hirohata, S., and Ogino, T. 1992. Interferon-alpha in lupus psychosis. Arthritis Rheum. 35:417–422.Google Scholar
  5. 5.
    Krönke, M., Leonard, W. J., Depper, J. M., Arya, S. K., Wong-Staal, F., Gallo, R. C., Waldmann, T. A., and Greene, W. C. 1984. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc. Natl. Acad. Sci. USA 81: 5214–5218.Google Scholar
  6. 6.
    Elliot, J. F., Lin, Y., Mizel, S. B., Bleackley, R. C., Harnish, D. G., and Paetkau, V. 1984. Induction of interleukin 2 mRNA inhibited by Cyclosporin A. Science 226:1439–1441.Google Scholar
  7. 7.
    Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., and Schmid, F. X. 1989. Cyclophilin and peptidyl-prolylcis-trans isomerase are probably identical proteins. Nature 337:476–478.Google Scholar
  8. 8.
    Takahashi, N., Hayano, T., and Suzuki, M. 1989. Peptidyl-prolylcis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337:473–475.Google Scholar
  9. 9.
    Handschumacher, R. E., Harding, M. W., Rice, J., Drugge, R. J., and Speicher, D. W. 1984. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547.Google Scholar
  10. 10.
    Clipstone, N. A., and Crabtree, G. R. 1992. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357:695–697.Google Scholar
  11. 11.
    Emmel, E. A., Verweij, C. L., Durand, D. B., Higgins, K. M., Lacy, E., and Crabtree, G. R. 1989. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 246:1617–1620.Google Scholar
  12. 12.
    Mattila P. S., Ullman, K. S., Fiering, S., Emmel, E. A., McCutcheon, M., Crabtree, G. R., and Herzenberg, L. A. 1990. The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. EMBO J. 9:4425–4433.Google Scholar
  13. 13.
    Loskota, W. J., Lomax, P., and Rich, S. T. 1974. The gerbil as a model for the study of the epilepsies. Epilepsia 15:109–115.Google Scholar
  14. 14.
    Chomczynski, P., and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloro-from extraction. Anal. Biochem. 162:156–159.Google Scholar
  15. 15.
    Asanuma, M., Ogawa, N., Haba, K., Hirata, H., and Mori, A. 1992. Effects of chronic catecholamine depletions on muscarinic M1-receptor and its mRNA in rat brain. J. Neurol. Sci. 110:205–214.Google Scholar
  16. 16.
    Danielson, P. E., Forss-Petter, S., Brow, M. A., Calavetta, L., Douglass, J., Milner, R. J., and Sutcliffe, J. G. 1988. p1B15: a cDNA clone of rat mRNA encoding cyclophilin. DNA 7:261–267.Google Scholar
  17. 17.
    Lad, R. P., Smith, M. A., and Hilt, D. C. 1991. Molecular cloning and regional distribution of rat brain cyclophilin. Mol. Brain Res. 9:239–244.Google Scholar
  18. 18.
    Fazakerley, J. K., and Webb, H. E. 1985. Cyclosporin, blood-brain barrier, and multiple sclerosis. Lancet ii:889–890.Google Scholar
  19. 19.
    Palestine, A. G., Nussenblatt, R. B., and Chan, C. 1985. Cyclosporin penetration into anterior chamber of cerebrospinal fluid. Am. J. Ophthalmol. 99:210–211.Google Scholar
  20. 20.
    McDonald, M. L., Ardito, T., Marks, W. H., Kashgarian, M., and Lorber, M. I. 1992. The effect of cyclosporine administration on the cellular distribution and content of cyclophilin. Transplantation. 53:460–466.Google Scholar
  21. 21.
    Boespflug, O., Godfraind, C., and Tardieu, M. 1989. Effect of cyclosporin A on an experimental chronic viral infection of the central nervous system. J. Neuroimmunol. 21:49–57.Google Scholar
  22. 22.
    Berden, J. H. M., Hottsuma, A. J., Merx, J. L., and Keyser, A. 1985. Severe central-nervous-system toxicity associated with cyclosporin. Lancet i:219–220.Google Scholar
  23. 23.
    Koletsky, A. J., Harding, M. W., and Handschumacher, R. E., 1986. Cyclophilin: distribution and variant properties in normal and neoplastic tissues. J. Immunol. 137:1054–1059.Google Scholar
  24. 24.
    Ogawa, N., Tanaka, K., Kondo, Y., Asanuma, M., Mizukawa, K., and Mori, A. 1993. The preventive effect of cyclosporin A, an immunosuppressant, on the late onset reduction of muscarinic acetylcholine receptors in gerbil hippocampus after transient forebrain ischemia. Neurosci. Lett. 152:173–176.Google Scholar
  25. 25.
    Ziylan, Y. Z., and Ates, N. 1989. Age-related changes in regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by pentylenetetrazol. Neurosci. Lett. 96:179–184.Google Scholar
  26. 26.
    Miller, L. G., Galpern W. R., Dunlap, K., Dinarello, C. A., and Turner, T. J. 1991. Interleukin-1 augments gamma-aminobutyric acidA receptor function in brain. Mol. Pharmacol. 39:105–108.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Masato Asanuma
    • 1
  • Norio Ogawa
    • 1
  • Sakiko Nishibayashi
    • 1
  • Yoichi Kondo
    • 1
    • 2
  • Akitane Mori
    • 1
  1. 1.Department of Neuroscience, Institute of Molecular and Cellular MedicineOkayama University Medical SchoolOkayamaJapan
  2. 2.Third Department of Internal MedicineOkayama University Medical SchoolOkayamaJapan

Personalised recommendations