Abstract
We review a variety of recently obtained trace formulae for (multidimensional) Schrödinger operators and indicate their connections with the KdV hierarchy in one dimension. Our principal new result in this paper concerns a set of trace formulae in 1 ⩽d ⩽ 3 dimensions related to point interactions.
Similar content being viewed by others
References
Albeverio, S., Gesztesy, F., Høegh-Krohn, R., and Holden, H.:Solvable Models in Quantum Mechanics, Springer, New York, 1988.
Aronszajn, N. and Donoghue, W. F.: On exponential representations of analytic functions in the upper half-plane with positive imaginary part,J. Anal. Math. 5 (1957), 321–388.
Chudnovsky, D. V.: One and multidimensional completely integrable systems arising from the isospectral deformation, in: D. Iagolnitzer (ed.),Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics, Vol. 126, Springer, Berlin, 1980, pp. 352–416.
Craig, W.: The trace formula for Schrödinger operators on the line,Commun. Math. Phys. 126 (1989), 379–407.
Deift, P. and Trubowitz, E.: Inverse scattering on the line,Commun. Pure Appl. Math. 32 (1979), 121–251.
Dikii, L. A.: Trace formulas for Sturm-Liouville differential operators,Amer. Math. Soc. Transl. Ser. (2)18 (1961), 81–115.
Dubrovin, B. A.: Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials,Funct. Anal. Appl. 9 (1975), 215–223.
Flaschka, H.: On the inverse problem for Hill's operator,Arch. Rat. Mech. Anal. 59 (1975), 293–309.
Gelfand, I. M.: On identities for the eigenvalues of a second-order differential operator,Uspehi Mat. Nauk 11(1) (1956), 191–198 (in Russian).
Gelfand, I. M. and Dikii, L. A.: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations,Russ. Math. Surv. 30(5) (1975), 77–113.
Gelfand, I. M. and Levitan, B. M.: On a simple identity for the eigenvalues of a second-order differential operator,Dokl. Akad. Nauk SSSR 88 (1953), 593–596 (in Russian).
Gesztesy, F.: A complete spectral characterization of the double commutation method,J Funct. Anal. 117 (1993), 401–446.
Gesztesy, F.: New trace formulas for Schrödinger operators, in: G. Ferreyra, G. Goldstein, F. Neubrander (eds.),Evolution Equations, Marcel Dekker, New York, 1995, pp. 201–221.
Gesztesy, F. and Holden, H.: Trace formulas and conservation laws for nonlinear evolution equations,Rev. Math. Phys. 6 (1994), 51–95.
Gesztesy, F. and Simon, B.: Theξ function,Acta Math. (to appear).
Gesztesy, F., Holden, H., and Simon, B.: Absolute summability of the trace relation for certain Schrödinger operators,Commun. Math. Phys. (to appear).
Gesztesy, F., Karwowski, W., and Zhao, Z.: New types of soliton solutions,Bull. Amer. Math. Soc. (New Series) 27 (1992), 266–272.
Gesztesy, F., Karwowski, W., and Zhao, Z.: Limits of soliton solutions,Duke Math. J. 68 (1992), 101–150.
Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: Trace formulae and inverse spectral theory for Schrödinger operators,Bull. Amer. Math. Soc. (New Series) 29 (1993), 250–255.
Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: Higher order trace relations for Schrödinger operators,Rev. Math. Phys. (to appear).
Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: A trace formula for multidimensional Schrödinger operators, preprint.
Hochstadt, H.: On the determination of a Hill's equation from its spectrum,Arch. Rat. Mech. Anal. 19 (1965), 353–362.
Kotani, S. and Krishna, M.: Almost periodicity of some random potentials,J. Funct. Anal. 78 (1988), 390–405.
Krein, M. G.: Perturbation determinants and a formula for the traces of unitary and self-adjoint operators,Sov Math. Dokl. 3 (1962), 707–710.
Lax, P. D.: Trace formulas for the Schroedinger operator,Commun. Pure Appl. Math. 47 (1994), 503–512.
Levitan, B. M.: On the closure of the set of finite-zone potentials,Math. USSR Sbornik 51 (1985), 67–89.
Levitan, B. M.:Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.
Marchenko, V. A.:Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.
McKean, H. P. and van Moerbeke, P.: The spectrum of Hill's equation,Invent. Math. 30 (1975), 217–274.
Papanicolaou, V.: Trace formulas and the behavior of large eigenvalues,SIAM J. Math. Anal., to appear.
Perelomov, A. M.: Schrödinger equation spectrum and Korteweg-de Vries type invariants,Ann. Inst. H. Poincaré, Sect. A 24 (1976), 161–164.
Trubowitz, E.: The inverse problem for periodic potentials,Commun. Pure Appl. Math. 30 (1977), 321–337.
Venakides, S.: The infinite period limit of the inverse formalism for periodic potentials,Commun. Pure Appl. Math. 41 (1988), 3–17.
Wilk, S. F. J., Fujiwara, S., and Osborn, T. A.: N-body Green's function and their semiclassical expansion,Phys. Rev. 24A (1981), 2187–2202.
Zakharov, V. E. and Faddeev, L. D.: Korteweg-de Vries equation: a completely integrable Hamiltonian system,Funct. Anal. Appl. 5 (1971), 280–287.
Zorbas, J.: Perturbation of self-adjoint operators by Dirac distributions,J. Math. Phys. 21 (1980), 840–847.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gesztesy, F., Holden, H. On new trace formulae for Schrödinger operators. Acta Appl Math 39, 315–333 (1995). https://doi.org/10.1007/BF00994640
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00994640