Skip to main content
Log in

On new trace formulae for Schrödinger operators

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We review a variety of recently obtained trace formulae for (multidimensional) Schrödinger operators and indicate their connections with the KdV hierarchy in one dimension. Our principal new result in this paper concerns a set of trace formulae in 1 ⩽d ⩽ 3 dimensions related to point interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., and Holden, H.:Solvable Models in Quantum Mechanics, Springer, New York, 1988.

    Google Scholar 

  2. Aronszajn, N. and Donoghue, W. F.: On exponential representations of analytic functions in the upper half-plane with positive imaginary part,J. Anal. Math. 5 (1957), 321–388.

    Google Scholar 

  3. Chudnovsky, D. V.: One and multidimensional completely integrable systems arising from the isospectral deformation, in: D. Iagolnitzer (ed.),Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics, Vol. 126, Springer, Berlin, 1980, pp. 352–416.

    Google Scholar 

  4. Craig, W.: The trace formula for Schrödinger operators on the line,Commun. Math. Phys. 126 (1989), 379–407.

    Google Scholar 

  5. Deift, P. and Trubowitz, E.: Inverse scattering on the line,Commun. Pure Appl. Math. 32 (1979), 121–251.

    Google Scholar 

  6. Dikii, L. A.: Trace formulas for Sturm-Liouville differential operators,Amer. Math. Soc. Transl. Ser. (2)18 (1961), 81–115.

    Google Scholar 

  7. Dubrovin, B. A.: Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials,Funct. Anal. Appl. 9 (1975), 215–223.

    Google Scholar 

  8. Flaschka, H.: On the inverse problem for Hill's operator,Arch. Rat. Mech. Anal. 59 (1975), 293–309.

    Google Scholar 

  9. Gelfand, I. M.: On identities for the eigenvalues of a second-order differential operator,Uspehi Mat. Nauk 11(1) (1956), 191–198 (in Russian).

    Google Scholar 

  10. Gelfand, I. M. and Dikii, L. A.: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations,Russ. Math. Surv. 30(5) (1975), 77–113.

    Google Scholar 

  11. Gelfand, I. M. and Levitan, B. M.: On a simple identity for the eigenvalues of a second-order differential operator,Dokl. Akad. Nauk SSSR 88 (1953), 593–596 (in Russian).

    Google Scholar 

  12. Gesztesy, F.: A complete spectral characterization of the double commutation method,J Funct. Anal. 117 (1993), 401–446.

    Google Scholar 

  13. Gesztesy, F.: New trace formulas for Schrödinger operators, in: G. Ferreyra, G. Goldstein, F. Neubrander (eds.),Evolution Equations, Marcel Dekker, New York, 1995, pp. 201–221.

    Google Scholar 

  14. Gesztesy, F. and Holden, H.: Trace formulas and conservation laws for nonlinear evolution equations,Rev. Math. Phys. 6 (1994), 51–95.

    Google Scholar 

  15. Gesztesy, F. and Simon, B.: Theξ function,Acta Math. (to appear).

  16. Gesztesy, F., Holden, H., and Simon, B.: Absolute summability of the trace relation for certain Schrödinger operators,Commun. Math. Phys. (to appear).

  17. Gesztesy, F., Karwowski, W., and Zhao, Z.: New types of soliton solutions,Bull. Amer. Math. Soc. (New Series) 27 (1992), 266–272.

    Google Scholar 

  18. Gesztesy, F., Karwowski, W., and Zhao, Z.: Limits of soliton solutions,Duke Math. J. 68 (1992), 101–150.

    Google Scholar 

  19. Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: Trace formulae and inverse spectral theory for Schrödinger operators,Bull. Amer. Math. Soc. (New Series) 29 (1993), 250–255.

    Google Scholar 

  20. Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: Higher order trace relations for Schrödinger operators,Rev. Math. Phys. (to appear).

  21. Gesztesy, F., Holden, H., Simon, B., and Zhao, Z.: A trace formula for multidimensional Schrödinger operators, preprint.

  22. Hochstadt, H.: On the determination of a Hill's equation from its spectrum,Arch. Rat. Mech. Anal. 19 (1965), 353–362.

    Google Scholar 

  23. Kotani, S. and Krishna, M.: Almost periodicity of some random potentials,J. Funct. Anal. 78 (1988), 390–405.

    Google Scholar 

  24. Krein, M. G.: Perturbation determinants and a formula for the traces of unitary and self-adjoint operators,Sov Math. Dokl. 3 (1962), 707–710.

    Google Scholar 

  25. Lax, P. D.: Trace formulas for the Schroedinger operator,Commun. Pure Appl. Math. 47 (1994), 503–512.

    Google Scholar 

  26. Levitan, B. M.: On the closure of the set of finite-zone potentials,Math. USSR Sbornik 51 (1985), 67–89.

    Google Scholar 

  27. Levitan, B. M.:Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.

    Google Scholar 

  28. Marchenko, V. A.:Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.

    Google Scholar 

  29. McKean, H. P. and van Moerbeke, P.: The spectrum of Hill's equation,Invent. Math. 30 (1975), 217–274.

    Google Scholar 

  30. Papanicolaou, V.: Trace formulas and the behavior of large eigenvalues,SIAM J. Math. Anal., to appear.

  31. Perelomov, A. M.: Schrödinger equation spectrum and Korteweg-de Vries type invariants,Ann. Inst. H. Poincaré, Sect. A 24 (1976), 161–164.

    Google Scholar 

  32. Trubowitz, E.: The inverse problem for periodic potentials,Commun. Pure Appl. Math. 30 (1977), 321–337.

    Google Scholar 

  33. Venakides, S.: The infinite period limit of the inverse formalism for periodic potentials,Commun. Pure Appl. Math. 41 (1988), 3–17.

    Google Scholar 

  34. Wilk, S. F. J., Fujiwara, S., and Osborn, T. A.: N-body Green's function and their semiclassical expansion,Phys. Rev. 24A (1981), 2187–2202.

    Google Scholar 

  35. Zakharov, V. E. and Faddeev, L. D.: Korteweg-de Vries equation: a completely integrable Hamiltonian system,Funct. Anal. Appl. 5 (1971), 280–287.

    Google Scholar 

  36. Zorbas, J.: Perturbation of self-adjoint operators by Dirac distributions,J. Math. Phys. 21 (1980), 840–847.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesztesy, F., Holden, H. On new trace formulae for Schrödinger operators. Acta Appl Math 39, 315–333 (1995). https://doi.org/10.1007/BF00994640

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00994640

Mathematics subject classifications (1991)

Key words

Navigation