Skip to main content
Log in

Solitons and the Korteweg-de Vries equation: Integrable systems in 1834–1995

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We trace the connections back from the paper by D. J. Korteweg and G. de Vries of 1895 to the sequence of events which began in August 1834 when J. S. Russell observed the soliton and so explain why KdV's paper was so much concerned with ‘change of form of long waves’. From this we trace a forward path which since 1895 has seen the discovery of the inverse method, associated with this a far-reaching mathematical structure, and at 1995 found a basis for two-dimensional quantum gravity intimately connected with the Korteweg-de Vries equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korteweg, D. J. and de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 5, Vol. 39, No. 241, June 1895, pp. 422–443 [Phil. Mag. 39 (1895), 422–443].

    Google Scholar 

  2. Russell, J. S.: Experimental researches into the laws of certain hydrodynamical phenomena that accompany the motion of floating bodies and have not previously been reduced into conformity with the laws of resistance of fluids,Trans. Royal Soc. Edinburgh, XIV (1840), 47–109.

    Google Scholar 

  3. Russell, J. S.: Report on waves,British Association Reports, 1844.

  4. Bullough, R. K.: The wave ‘par excellence’, the solitary, progressive great wave of equilibrium of the fluid — an early history of the solitary wave, in M. Lakshmanan (ed.),Solitons, Springer Ser. in Nonlinear Dynamics, Springer-Verlag, Heidelberg, 1988, pp. 7–42.

    Google Scholar 

  5. Zabusky, N. and Kruskal, M. D.:Phys. Rev. Lett. 15 (1965), 240.

    Google Scholar 

  6. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.:Phys. Rev. Lett. 19 (1967), 1995.

    Google Scholar 

  7. Bullough, R. K. and Bogoliubov, N. M.: in Sultan Catto and Alveney Rocha (eds),Proc XXth Conference on Differential and Geometric Methods in Theoretical Physics, World Scientific, Singapore, 1992, pp. 488–504.

    Google Scholar 

  8. Bullough, R. K. and Bogoliubov, N. M.: in A. S. Fokas, D. J. Kaup, A. C. Newell and V. E. Zakharov (eds),Nonlinear Processes in Physics, Springer Ser. in Nonlinear Dynamics, Springer-Verlag, Berlin, 1993, pp. 232–240.

    Google Scholar 

  9. Kadomtsev, B. B. and Petviashvili, V. I.:Sov. Phys. Dokl. 15 (1970), 539–541.

    Google Scholar 

  10. Ikezi, H., Taylor, R. J., and Baker, R. D.:Phys. Rev. Lett. 25 (1970), 11. Also see Bullough, R. K.: inInteraction with Radiation and Matter, Vol. 1, International Atomic Agency, Vienna (IAEA-SMR-20/51), 1977.

    Google Scholar 

  11. Russell, J. S.: The wave of translation and the work it does as the carrier wave of sound,Proc. Royal Soc. 32 (1881), 382–383.

    Google Scholar 

  12. Bullough, R. K. and Caudrey, P. J. (eds):Solitons, Springer Topics in Current Physics, Vol. 17, Springer-Verlag, Heidelberg, 1980, Chapter 1.

    Google Scholar 

  13. Kruskal, M. D.: Private communication at the John Scott Russell meeting, 1982.

  14. Stokes, Sir George:Trans. Comb. Phil. Soc. 8 (1847), 441.

    Google Scholar 

  15. Lagrange, J. L.:Méchanique Analytique, pp. XII, 512 Chez La Veuve Desaint, Paris (1788), 1811–1815, Nouvelle Edition Augmenté par L'auteur, 2 Vols., Paris.

    Google Scholar 

  16. Laplace, P. S. (Marquis de Laplace):Traité de méchanique céleste, Chez J. B. M. Duprat Paris au VII (1799), 1799–1823.

    Google Scholar 

  17. Poisson, S. D.: Mémoires sur la théorie des ondes,Mem. de l'Acad Royale des Sciences (i), 1816.

  18. Weber, E. H. and Weber, W.:Wellenlehre auf Experimente gegründet, oder über tropfbaren Flüssigkeiten mit Adwendung auf die Schall und Licht-Wellen, Leipzig, 1825.

  19. Emerson, G. S.:John Scott Russell. A Great Victorian Engineer and Naval Architect, John Murray, London, 1977.

    Google Scholar 

  20. Airy, Sir. G. B. (Astronomer Royal): Tides and waves,Encyclopaedia Metropolitana, 1845.

  21. de Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond,J. Math. Pures et Appliquées 2 (1872), 55.

    Google Scholar 

  22. Rayleigh, Lord (J. W. Strutt): On waves,Phil. Mag. 1 (1876), 257.

    Google Scholar 

  23. Russell, J. S.:The Wave of Translation in the Oceans of Water, Air and Ether, Trubner, London, 1895.

    Google Scholar 

  24. Herschel, Sir John: quoted by Russell in his bookThe Modern System of Naval Architecture, Day and Son, London, 1865.

    Google Scholar 

  25. Stokes, Sir George:British Association Reports, 1846.

  26. St. Venant, B. de:Comptes Rendus, Vol. CI, 1885, reference taken from KdV [1].

  27. McCowan, J.: On the solitary wave,Phil. Mag. 31 (1891), 45; On the highest wave of permanent type,Phil. Mag. 38 (1894), 351.

    Google Scholar 

  28. Caudrey, P. J.:Physica D6 (1982), 51.

    Google Scholar 

  29. Caudrey, P. J.: in A. P. Fordy (ed.),Soliton Theory: a Survey of Results, Manchester University Press, Manchester, 1990, pp. 25–54; 55–74.

    Google Scholar 

  30. Lamb, Sir Horace:Hydrodynamics (6th edn.), Cambridge University Press, Cambridge, 1952.

    Google Scholar 

  31. Ince, E. L.:Ordinary Differential Equations, Dover, New York, 1956.

    Google Scholar 

  32. Fermi, E., Pasta, J. R., and Ulam, S. M.:Studies of Nonlinear Problems, Vol. 1, Los Alamos Report LA-1940,1940 (May 1955);Collected Works of E. Fermi, Vol. 2, University of Chicago Press, 1965, pp. 978–988.

  33. Darboux, G.:Leçons sur la Théorie des Surfaces (2nd edn.), Gauthier-Villars, Paris, 1915.

    Google Scholar 

  34. Matveev, V. B. and Salle, M. A.:Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  35. Darboux, G.: At the Oberwolfach Meeting, July1993 (for example).

  36. Painlevé, P.:Bull. Soc. Math. France 28 (1900), 227;Comptes Rendus Acad. Sc. Paris 135 (1902), pp. 411, 641, 757, 1020.

    Google Scholar 

  37. Ablowitz, M. J. and Clarkson, P. A.:Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge, 1991, Chapter 7.

    Google Scholar 

  38. Fuchs, R.: Sur quelques équations différentielles linéaires du second ordre,Comptes Rendus Acad. Sc. Paris 141 (1905), 555–558.

    Google Scholar 

  39. See footnote of references in Ince [32].

    Google Scholar 

  40. Miura, R. M., Gardner, C. S., and Kruskal, M. D.:J. Math. Phys. 9 (1968), 1204.

    Google Scholar 

  41. Miura, R. M.:J. Math. Phys. 9 (1968), 1202.

    Google Scholar 

  42. Gel'fand, I. M. and Levitan, B. M.:Izv. Akad. Nauk. SSR, Ser. Mat. 15 (1951), 309; English translationAmer. Math. Soc. Translations, Ser. 2,1 (1955), 253. The extension to −∞ <x < ∞ is due to V. A. Marchenko. Also see Chadan, K. and Sabatier, P. C:Inverse Problems in Quantum Scattering Theory, Texts and Monographs in Physics, Springer-Verlag, Berlin, Heidelberg, New York, 1977.

    Google Scholar 

  43. Kay, I.: Report No. EM-74, Courant Inst. of Mathematical Sciences, New York University, 1955.

  44. Lax, P. D.:Comm. Pure Appl. Math. 21 (1968), 467.

    Google Scholar 

  45. Gel'fand, I. M. and Dikii, L.:Uspekhi Mat. Nauk 30 (1975), 67;Russian Math. Surveys 30 (1975), 77;Funkt. Anal. Prilozh. 10 (1976), 18.

    Google Scholar 

  46. Novikov, S. P.:Funkt. Anal. Prilozh. 8(3) (1974), 54–66.

    Google Scholar 

  47. Gardner, C. S.:J. Math. Phys. 12 (1971), 1548.

    Google Scholar 

  48. Gross, David J. and Migdal, Alexander A.:Nuclear Physics B340 (1990), 332.

    Google Scholar 

  49. Migdal, A. A.: Matrix models, in V. Bazhanov (ed.),Proc. 7th Physics Summer School in Statistical Mechanics and Field Theory, Australian National University, Canberra, January 1994, World Scientific, Singapore, 1995, to appear.

    Google Scholar 

  50. Zakharov, V. E. and Faddeev, L. D.:Funkt. Anal. Prilozh. 5 (1971), 18;Funct. Anal. Appl. 5 (1971), 280.

    Google Scholar 

  51. Baxter, Rodney, J.:Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.

    Google Scholar 

  52. Bullough, R. K. and Timonen, J. T.: Quantum and classical integrable models and statistical mechanics, in V. V. Bazhanov (ed.),Proc. 7th Physics Summer School in Statistical Mechanics and Field Theory, Australian National University, Canberra, January 1994, World Scientific, Singapore, 1995, to appear.

    Google Scholar 

  53. Bullough, R. K. and Timonen, J.: in A. R. Bishop, V. L. Pokrovsky and V. Tognetti (eds),Microscopic Aspects of Nonlinearity in Condensed Matter, NATO ARW Series B: Physics, Vol. 264, Plenum, New York, 1991, pp. 263–280.

    Google Scholar 

  54. Bullough, R. K., Chen, Yu-Zhong, and Timonen, J. T.:Physica D68 (1993), 83.

    Google Scholar 

  55. Timonen, J. T., Stirland, M., Pilling, D. J., Cheng Yi. and Bullough, R. K.:Phys. Rev. Lett. 56 (1986), 2233.

    Google Scholar 

  56. Dingle, R. B. and Müller, H. J. W.:J. Reine und Angewandte Math. 211 (1962), 11.

    Google Scholar 

  57. Bullough, R. K., Chen, Y-Z. and Timonen, J. T.: in V. G. Bar'yakhtar, V. Chernousenko, N. S. Erokhin, A. G. Sitenko, and V. E. Zakharov (eds),Nonlinear World, Vol. 2, World Scientific, Singapore, 1990, pp. 1377–1422.

    Google Scholar 

  58. Timonen, J., Bullough, R. K., and Pilling, D. J.:Phys. Rev. B34 (1986), 6525.

    Google Scholar 

  59. Bullough, R. K., Pilling, D. J., and Timonen, J. T.: in M. Lakshmanan (ed.),Solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Heidelberg, 1988, pp. 250–281.

    Google Scholar 

  60. Korepin, V. E., Bogoliubov, N. M., and Iczersin, A. C.:Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 (and references therein).

    Google Scholar 

  61. Sklyanin, E. K.: The quantum Toda chain, in N. Sanchez (ed.),Nonlinear Equations in Classical and Quantum Field Theory, Lecture Notes in Physics, Vol. 226, Springer-Verlag, Berlin, 1985, pp. 196–233.

    Google Scholar 

  62. Zakharov, V. E. and Shabat, A. B.:Funct. Anal. Appl. 8 (1974), 226;Funct. Anal. Appl. 13 (1979), 166.

    Google Scholar 

  63. Beales, R. and Coifman, R. R.:Physica D18 (1986), 242.

    Google Scholar 

  64. Manakov, S. V.:Physica D3 (1981), 420.

    Google Scholar 

  65. Ablowitz, M. J., Yaacov, D. Bar, and Fokas, A. S.:Stud. Appl. Math. 69 (1983),135 (and references therein).

    Google Scholar 

  66. Fokas, A. S., Its, A. R., and Kitaev, A. V.:Commun. Math. Phys. 147 (1992), 395–430.

    Google Scholar 

  67. Polyakov, A. M.:Phys. Lett. B103 (1981), 207;Modern Phys. Lett. A2 (1987), 899.

    Google Scholar 

  68. Migdal, A. A.: in D. J. Gross, T. Piran and S. Weinberg (eds),Two Dimensional Quantum Gravity and Random Surfaces, Jerusalem Winter School for Theoretical Physics, Vol. 8, World Scientific, Singapore, 1992, pp. 41–79 and other papers there.

    Google Scholar 

  69. Goddard, Peter and Olive, David:Int. J. Modern Physics Al(2) (1986), 320–325.

    Google Scholar 

  70. David, F.:Mod. Phys. Lett. A5(13) (1990), 1019–1029.

    Google Scholar 

  71. Fukuma, M., Kawai, H., and Ryuichi Nakayama:Int. J. Modern Physics A6(8) (1991), 1385–1406.

    Google Scholar 

  72. Dijkgraaf, R., Verlinde, H., and Verlinde, E.:Nuclear Phys. B348 (1991), 435–456.

    Google Scholar 

  73. Alvarez-Gammé, Gomez, C., and Lacki, I.:Phys. Lett. B253 (1991), 56–62.

    Google Scholar 

  74. Gross, D. J.: String theory, in V. V. Bazhanov (ed.),Proc. 7th Physics Summer School in Statistical Mechanics and Field Theory, Australian National University, Canberra, January 1994, World Scientific, Singapore, 1995, to appear.

    Google Scholar 

  75. Jimbo Michio and Miwa Tetsuji: in G. M. D'Ariano, A. Montorsi and M. G. Rasetti (eds),Integrable Systems in Statistical Mechanics, World Scientific, Singapore, 1985, pp. 65–127.

    Google Scholar 

  76. Hirota, R.: Chapter 5 of Ref. [12], 1980.

  77. Hirota, R.:Phys. Rev. Lett. 27 (1971), 1192.

    Google Scholar 

  78. Caudrey, P. J., Gibbon, J. D., Eilbeck, J. C., and Bullough, R. K.:Phys. Rev. Lett. 30 (1973), 237.

    Google Scholar 

  79. Caudrey, P. J., Eilbeck, J. C., and Gibbon, J. D.:J. Inst. Maths. Appl. 14 (1974), 375.

    Google Scholar 

  80. Aoyama, S. and Kodama, Y.:Phys. Lett. B278 (1992), 56–62.

    Google Scholar 

  81. Aoyama, S. and Kodama, Y.:Phys. Lett. B29S (1992), 190–198.

    Google Scholar 

  82. Cheng, Yi, Li, Yi-Shen and Bullough, R. K.:J. Phys. A: Math. Gen. 21 (1988), L443.

    Google Scholar 

  83. Penrose, R.:Shadows of the Mind, Oxford University Press, Oxford, 1994; also inTimes Higher Educational Supplement, Times Supplements Ltd, London El 9XY, p. 15, Oct. 14, 1994.

    Google Scholar 

  84. Josephson, Brian: To err is mechanical, inTimes Higher Educational Supplement, Times Supplements Ltd, London El 9XY, p. 23, Nov. 4, 1994.

    Google Scholar 

  85. Bullough, R. K. and Caudrey, P. J.: Optical solitons and their spin wave analogues in3He, in L. Mandel and E. Wolf (eds),Coherence and Quantum Optics IV, Plenum, New York, 1978, pp. 767–780.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullough, R.K., Caudrey, P.J. Solitons and the Korteweg-de Vries equation: Integrable systems in 1834–1995. Acta Appl Math 39, 193–228 (1995). https://doi.org/10.1007/BF00994634

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00994634

Mathematics subject classification (1991)

Key words

Navigation