Advertisement

Acta Applicandae Mathematica

, Volume 34, Issue 1–2, pp 37–50 | Cite as

Shift-coupling and a zero-one law for random walk in random environment

  • Frank Den Hollander
  • Hermann Thorisson
Part I: Coupling

Abstract

This paper discusses several aspects of shift-coupling for random walk in random environment.

Mathematics Subject Classifications (1991)

60J10, 60J15, 60K05 

Key words

Coupling regeneration random walk in random environment renewal theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldous, D. and Thorisson, H.: Shift-coupling,Stock. Proc. Appl. 44 (1993), 1–14.Google Scholar
  2. 2.
    Andjel, E.: A zero or one law for one dimensional random walks in random environments,Ann. Probab. 16 (1988), 722–729.Google Scholar
  3. 3.
    Berbee, H. C. P.:Random Walks with Stationary Increments and Renewal Theory, Math. Centre Tract 112, Mathematisch Centrum, Amsterdam, 1979.Google Scholar
  4. 4.
    Durrett, R.: Multidimensional random walks in random environments with subclassical limiting behavior,Comm. Math. Phys. 104 (1986), 87–102.Google Scholar
  5. 5.
    Durrett, R., Kesten, H. and Lawler, G.: Making money from fair games, in R. Durrett and H. Kesten (eds),Random Walks, Brownian Motion and Interacting Particle Systems, A Festschrift in Honor of Frank Spitzer, Birkhäuser, Basel, 1991, pp. 255–267.Google Scholar
  6. 6.
    Den Hollander, F., Naudts, J. and Redig, F.: Invariance principle for the stochastic Lorentz lattice gas,J. Statist. Phys. 66 (1992), 1583–1598.Google Scholar
  7. 7.
    Lindvall, T.:Lectures on the Coupling Method, Wiley, New York, 1992.Google Scholar
  8. 8.
    Kalikow, S.: Generalized random walk in random environment,Ann. Probab. 9 (1981), 753–768.Google Scholar
  9. 9.
    Spitzer, F.:Principles of Random Walk, Springer, New York, 1964.Google Scholar
  10. 10.
    Thorisson, H.: The coupling of regenerative processes,Adv. Appl. Probab. 15 (1983), 531–561.Google Scholar
  11. 11.
    Thorisson, H.: Backward limits,Ann. Probab. 16 (1988), 914–924.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Frank Den Hollander
    • 1
  • Hermann Thorisson
    • 2
  1. 1.Mathematical InstituteUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Science InstituteUniversity of IcelandReykjavikIceland

Personalised recommendations