Advertisement

Machine Learning

, Volume 14, Issue 3, pp 313–320 | Cite as

Children, adults, and machines as discovery systems

  • David Klahr
Extended Abstract
  • 201 Downloads

Keywords

Artificial Intelligence Computing Methodology Discovery System Language Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bazerman, C. (1988).Shaping written knowledge: The genre and activity of the experimental article in science. Madison, WI: University of Wisconsin Press.Google Scholar
  2. Bijker, W. E., Hughes, T.P., & Pinch, T. (1987).The social construction of technological systems: new directions in the sociology and history of technology. Cambridge, MA: MIT Press.Google Scholar
  3. Brewer, W. F., & Samarapungavan, A. (1991). Child theories versus scientific theories: Differences in reasoning or differences in knowledge? In R. R. Hoffman & D. S. Palermo (Eds.),Cognition and the symbolic processes: Applied and ecological perspectives. Hillsdale, NJ: Erlbaum.Google Scholar
  4. Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956).A study of thinking. New York, NY: Science Editions, Inc.Google Scholar
  5. Cheng, P. C-H. (1992). Approaches, models and issues in computational scientific discovery. In M.T. Keane & K. Gilhooly, (Eds.),Advances in the Psychology of Thinking, Vol. I. Hemel Hempstead, Hertfordshire: Harvester Wheatsheaf.Google Scholar
  6. Cheng, P. C-H., & Simon, H.A. (1992). The flight representation for discovery: Finding the conservation of momentum. InMachine Learning: Proceedings of the Ninth International Workshop (ML92) (pp. 62–71). San Mateo, CA: Morgan Kaufmann.Google Scholar
  7. Dunbar, K., (1989). Scientific reasoning strategies in a simulated molecular genetics environment. InProceedings of the Eleventh Annual Meeting of the Cognitive Science Society (pp. 426–433). Hillsdale, NJ: Erlbaum.Google Scholar
  8. Dunbar, K., (1992). Evidence, evaluation and planning heuristics in molecular biology laboratories.Proceedings of Annual Meeting of Judgement & Decision Making Society.Google Scholar
  9. Dunbar, K., & Schunn, C. D. (1990). The temporal nature of scientific discovery: The roles of priming and analogy. InProceedings of the Twelfth Annual Conference of the Cognitive Science Society (pp. 93–100). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Gholson, B., Shadish, Jr., W.R., Neimeyer, R.A., & Houts, A.C. (1989).Psychology of science: Contributions to metascience. Cambridge, MA: Cambridge University Press.Google Scholar
  11. Giere, R.N. (1988).Explaining science: A cognitive approach. Chicago, IL: University of Chicago Press.Google Scholar
  12. Glynn, S.M., Yeany, R.H., & Britton, B.K. (1991).The psychology of learning science. Hillsdale, NJ: Erlbaum.Google Scholar
  13. Gorman, M. E. (1992). Using experiments to determine the heuristic value of falsifieation. In M. Keane & K. Gilhooly (Eds.)Advances in the Psychology of Thinking, Vol. 1. Hemel Hempstead, Hertfordshire: Harvester Wheatsheaf.Google Scholar
  14. Holland, J., Holyoak, K., Nisbett, R. E., & Thagard, P. (1986).Induction: Processes of inference, learning, and discovery, Cambridge, MA: MIT Press.Google Scholar
  15. Kaplan, C.A., & Simon, H.A. (1990). In search of insight.Cognitive Psychology, 22, 374–419.Google Scholar
  16. Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning.Cognitive Science, 12, 1–55.Google Scholar
  17. Klahr, D., Fay, A., Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study.Cognitive Psychology, 25, 111–146.Google Scholar
  18. Klayman, J., & Ha, Y. (1987). Confirmation, disconfirmation and information in hypothesis testing.Psychological Review, 94, 211–228.Google Scholar
  19. Kuhn, D. (1989). Children and adults as intuitive scientists.Psychological Review, 96, 674–689.Google Scholar
  20. Kulkarni, D., & Simon., H.A., (1988). The processes of scientific discovery: The strategy of experimentation,Cognitive Science, 12, 139–175.Google Scholar
  21. Langley, P., Simon, H.A., Bradshaw, G.L., & Zytkow, J.M. (1987).Scientific discovery: Computational explorations of the creative processes. Cambridge, MA: MIT Press.Google Scholar
  22. Qin, Y. & Simon, H.A. (1990). Imagery and problem solving.Proceedings of The 12th Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.Google Scholar
  23. Schauble, L. (1990). Belief revision in children: The role of prior knowledge and strategies for generating evidence.Journal of Experimental Child Psychology, 49, 31–57.Google Scholar
  24. Schauble, L., Klopfer, L. E., & Raghavan, K. (1991). Students' transition from an engineering model to a science model of experimentation.Journal of Research in Science Teaching, 28, 859–882.Google Scholar
  25. Shrager, J., & Langley, P. (1990).Computational models of scientific discovery and theory formation. San Mateo, CA: Morgan Kaufmann.Google Scholar
  26. Simon, H.A. (1966). Scientific discovery and the psychology of problem solving. In R. Colodny (Ed.),Mind and Cosmos. Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
  27. Simon, H.A. (1973). Does scientific discovery have a logic?Philosophy of Science, 40, 471–480.Google Scholar
  28. Sleeman, D.H., Stacey, M.K., Edwards, P., & Gray, N.A.B. (1989). An architecture for theory-driven scientific discovery. InProceedings of the European Working Session on Learning (EWSL-89). (pp. 11–23). London: Pitman.Google Scholar
  29. Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children's differentiation of hypothetical beliefs from evidence.Child Development, 62, 753–766.Google Scholar
  30. Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses.Child Development, 51, 1–10.Google Scholar
  31. Tweney, R. D., Doherty, M. E., & Mynatt, C. R. (1981)On scientific thinking. New York, NY: Columbia University Press.Google Scholar
  32. Valdes-Perez, R.E., Simon, H.A., & Murphy, R.F. (1992). Discovery of pathways in science. InProceedings of the Machine Discovery Workshop at theInternational Conference on Machine Learning (ML92).Google Scholar
  33. Vosniadou, S. & Brewer, W.F. (1992). Mental models of the earth: A study of conceptual change in childhood.Cognitive Psychology, 24, 535–585.Google Scholar
  34. Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task.Quarterly Journal of Experimental Psychology, 12, 129–140.Google Scholar
  35. Wellman, H. M. (1983). Metamemory revisited. In M. T. Chi (Ed.),Trends in memory development research. New York, NY: Karger.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • David Klahr
    • 1
  1. 1.Department of PsychologyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations