Advertisement

Journal of Chemical Ecology

, Volume 17, Issue 9, pp 1783–1799 | Cite as

White alder and Douglas-fir foliage quality and interegg-mass influences on larval development of gypsy moth,Lymantria dispar

  • G. Joseph
  • J. C. Miller
  • R. E. Berry
  • J. Wernz
  • A. F. Moldenke
  • R. G. Kelsey
Article

Abstract

Individual families of gypsy moth collected from a single population exhibited different degrees of fitness when fed diets of white alder, a suitable broadleaf host, and Douglas-fir, an unsuitable conifer host. Members of families on diets of Douglas-fir had significantly lower survival, longer larval periods, lower pupal weights, and shorter pupal periods than members of the same families fed alder. Foliar nutritional quality, including nitrogen level and allelochemical composition (terpenes and phenols), was considered the key factor responsible for these differences. Growth parameters differed significantly for families within diet treatments, indicating that the genetic resources of a family did affect performance somewhat. The influence of a family's genetic resources on larval survival was most notable when larvae were under the greatest nutritional stress.

Key Words

Douglas-fir Pseudotsuga menziesii gypsy moth Lymantria dispar Lepidoptera Lymantriidae insect-host plant relations phenolics terpenes white alder Alnus rhombifolia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. 1975. Technicon Autoanalyzer II Methodology. Individual Simultaneous Determination of Nitrogen & Phosphorus in BD Acid Digests. Industrial Method No. 334-74A. Technicon Corporation, New York.Google Scholar
  2. Barbosa, P., andKrischik, V.A. 1987. Influence of alkaloids on feeding preference of eastern deciduous forest trees by the gypsy mothLymantria dispar.Am. Nat. 130:53–69.Google Scholar
  3. Barbosa, P., Waldvogel, M., Martinat, P., andDouglass, L.W. 1983. Developmental and reproductive performance of the gypsy mothLymantria dispar (L.) (Lepidoptera: Lymantriidae) on selected hosts common to mid-Atlantic and southern forests.Environ. Entomol. 12:1858–1862.Google Scholar
  4. Barbosa, P., Martinat, P., andWaldvogel, M. 1986. Development, fecundity and survival of the herbivoreLymantria dispar and the number of plant species in its diet.Ecol. Entomol. 11:1–6.Google Scholar
  5. Barbosa, P., Gross, P., Provan, G.J., Pacheco, D.Y., andStermitz, F.R. 1990a. Allelochemicals in foliage of unfavored tree hosts of the gypsy moth,Lymantria dispar L. 1. Alkaloids and other components ofLiriodendron tulipifera L. (Magnoliaceae),Acer rubrum L. (Aceraceae), andCornus florida L. (Cornaceae).J. Chem. Ecol. 16:1719–1730.Google Scholar
  6. Barbosa, P., Gross, P., Provan, G.J., andStermitz, F.R. 1990b. Allelochemicals in foliage of unfavored tree hosts of the gypsy moth,Lymantria dispar L. 2. Seasonal variation of saponins inIlex opaca and identification of saponin aglycones.J. Chem. Ecol. 16:1731–1738.Google Scholar
  7. Bate-Smith, E.C. 1977. Astringent tannins ofAcer species.Phytochemistry 16:1421–1426.Google Scholar
  8. Berenbaum, M.R. 1983. Effects of tannins on growth and digestion in two species of papilionids.Entomol. Exp. Appl. 34:245–250.Google Scholar
  9. Bernays, E.A. 1981. Plant tannins and insect herbivores: An appraisal.Ecol. Entomol. 6:353–360.Google Scholar
  10. Brattsten, L.B. 1986. Fate of ingested plant allelochemicals in herbivorous insects, pp. 211–255,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.Google Scholar
  11. Brooks, J.E., Borden, J.H., Pierce, H.D., Jr., andLister, G.R. 1987. Seasonal variation in foliar and bud monoterpenes in sitka spruce.Can. J. Bol. 65:1249–1252.Google Scholar
  12. Campbell, R.W. 1981. Population dynamics, pp. 65–86,in C.C. Doane and M.L. McManus (eds.). The Gypsy Moth: Research Toward Integrated Pest Management. USDA, Forest Service, Science Education Agency Technical Bulletin 1584. Washington, D.C.Google Scholar
  13. Daterman, G.E., Miller, J.C., andHanson, P.E. 1986. Potential for gypsy moth problems in southwest Oregon, pp. 37–40,in O.T. Helgerson (ed.). Forest Pest Management in Southwest Oregon. Forest Research Laboratory, Oregon State University, Corvallis.Google Scholar
  14. Doane, C.C., andMcManus, M.L. 1981. The Gypsy Moth: Research Toward Integrated Pest Management. USDA, Forest Service, Science Education Agency Technical Bulletin 1584. Washington D.C. 757 pp.Google Scholar
  15. Doskotch, R.W., Cheng, H.Y., O'Dell, T.M., andGirard, L. 1980a. Nerolidol: An antifeeding sesquiterpene alcohol for gypsy moth larvae fromMelaleuca leucadendron.J. Chem. Ecol. 6:845–851.Google Scholar
  16. Doskotch, R.W., Fairchild, E.H., Huang, C.T., Wilton, J.H., Beno, M.A., andChristoph, G.G. 1980b. Tulirinol, an antifeedant sesquiterpene lactone for the gypsy moth larvae fromLiriodendron tulipifera.J. Org. Chem. 45:1441–1446.Google Scholar
  17. Doskotch, R.W.,O'Dell, T.M., andGirard, L. 1981. Phytochemicals and feeding behavior of gypsy moth larvae, pp. 657–666,in C.C. Doane and M.L. McManus (eds.). The Gypsy Moth: Research Toward Integrated Pest Management. USDA, Forest Service, Science Education Agency Technical Bulletin 1584. Washington, D.C.Google Scholar
  18. Elkinton, J.S., andLiebhold, A.M. 1990. Population dynamics of gypsy moth in North America.Annu. Rev. Entomol. 35:571–596.Google Scholar
  19. El-Naggar, S.F., Doskotch, R.W., O'Dell, T.M., andGirard, L. 1980. Antifeedant diterpenes for the gypsy moth larvae fromKalmia latifolia: Isolation and characterization of ten grayanoids.J. Nat. Prod. 43:617–631.Google Scholar
  20. Farnsworth, N.R. 1966. Biological and phytochemical screening of plants.J. Pharm. Sci. 55:225–276.Google Scholar
  21. Feeny, P. 1976. Plant apparency and chemical defense.Recent Adv. Phytochem. 10:1–40.Google Scholar
  22. Goldschmidt, R. 1934.Lymantria. Biblio. Genet. 11:1–186.Google Scholar
  23. Harwood, S.H., Moldenke, A.F., andBerry, R.E. 1990. Toxicity of peppermint monoterpenes to the variegated cutworm (Lepidoptera: Noctuidae).J. Econ. Entomol. 83:1761–1767.Google Scholar
  24. Hough, J.A., andPimentel, D. 1978. Influence of host foliage on development survival and fecundity of the gypsy moth.Environ. Entomol. 7:97–102.Google Scholar
  25. Joseph, G. 1989. Host suitability studies of Douglas-fir and white alder to the gypsy moth. Masters thesis. Oregon State University, Corvallis. 103 pp.Google Scholar
  26. Julkunen-Tiitto, R. 1985. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics.J. Agric. Food Chem. 33:213–217.Google Scholar
  27. Kleiner, K.W., Montgomery, M.E., andSchultz, J.C. 1989. Variation in leaf quality of two oak species: Implications for stand susceptibility to gypsy moth defoliation.Can. J. For. Sci. 19:1445–1450.Google Scholar
  28. Klocke, J.A., andChan, B.G. 1982. Effects of cotton condensed tannin on feeding and digestion in the cotton pest,Heliothis zea.J. Insect Physiol. 28:911–915.Google Scholar
  29. Lechowicz, M.J. 1983. Leaf quality and the host preferences of gypsy moth in the northern deciduous forest, pp. 67–82,in Forest Defoliater-Host Interactions: A Comparison Between Gypsy Moth and Spruce Budworms. USDA, Forest Service, Northeastern Station General Technical Report NE-85.Google Scholar
  30. Leonard, D.E. 1966. Differences in development of strains of the gypsy mothPorthetria dispar (L.). Connecticut Agriculture Experiment Station Bulletin 680. 31 pp.Google Scholar
  31. Leonard, D.E. 1969. Intrinsic factors causing qualitative changes in populations of gypsy moth.Proc. Entomol. Soc. Ont. 100:195–199.Google Scholar
  32. Manuwoto, S., andScriber, J.M. 1986. Effects of hydrolyzable and condensed tannin on growth and development of two species of polyphagous lepidoptera:Spodoptera eridania andCallosamia promethea.Oecologia 69:225–230.Google Scholar
  33. Manuwoto, S., Scriber, J.M., Hsia, M.T., andSunarjo, P. 1985. Antibiosis/antixenosis in tulip tree and quaking aspen leaves against the polyphagous southern armyworm,Spodoptera eridania.Oecologia 67:1–7.Google Scholar
  34. Martin, J.S., Martin, M.M., andBernays, E.A. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: Implications for theories of plant defense.J. Chem. Ecol. 13:605–621.Google Scholar
  35. Martin, M.M., Rockholm, D.C., andMartin, J.S. 1985. Effects of surfactants, pH and certain cations on precipitation of proteins by tannins.J. Chem. Ecol. 11:485–494.Google Scholar
  36. Mattson, W.J., Jr.. 1980. Herbivory in relation to plant nitrogen content.Annu. Rev. Ecol. Syst. 11:119–161.Google Scholar
  37. Mattson, W.J., andScriber, J.M. 1987. Nutritional ecology of insect folivores of woody plants: Nitrogen, water, fiber, and mineral considerations, pp. 105–146,in F. Slansky, Jr. and J.G. Rodriguez (eds.). Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley-Interscience, New York.Google Scholar
  38. Meisner, J., andSkatulla, U. 1975. Phagostimulation and phagodeterrency in the larva of the gypsy moth,Porthetria dispar L.Phytoparasitica 3:19–26.Google Scholar
  39. Miller, J.C., andHanson, P.E. 1989a. Laboratory feeding tests on the development of gypsy moth larvae with reference to plant taxa and allelochemicals. Oregon State University Agriculture Experiment Station Bulletin 674. Corvallis, Oregon. 63 pp.Google Scholar
  40. Miller, J.C., andHanson, P.E. 1989b. Laboratory studies on development of gypsy mothLymantria dispar (L.) (Lepidoptera: Lymantriidae), larvae on foliage of gymnosperms.Can. Entomol. 121:425–429.Google Scholar
  41. Miller, J.C., Hanson, P.E., andKimberling, D.N. 1991. Development of the gypsy moth on Douglas-fir foliage.J. Econ. Entomol. 84:461–465.Google Scholar
  42. Mole, S., andWaterman, P.G. 1987. A critical analysis of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins.Oecologia 72:137–147.Google Scholar
  43. Ohmart, C.P., Stewart, L.G., andThomas, J.R. 1985. Effects of food quality, particularly nitrogen concentrations, ofEucalyptus blakelyi foliage on the growth ofParopsis atomaria larvae (Coleoptera: Chrysomelidae).Oecologia 65:543–549.Google Scholar
  44. Reese, J.C., Chan, B.G., andWaiss, A.C., Jr., 1982. Effects of cotton condensed tannin, maysin (corn) and pinitol (soybeans) onHeliothis zea growth and development.J. Chem. Ecol. 8:1429–1436.Google Scholar
  45. Rhoades, D.F. 1983. Herbivore population dynamics and plant chemistry, pp. 155–220,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  46. Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry.Recent Adv. Phytochem. 10:168–213.Google Scholar
  47. Rossiter, M.C. 1987. Use of a secondary host by non-outbreak populations of the gypsy moth.Ecology 68:857–868.Google Scholar
  48. Rossiter, M.C., Schultz, J.C., andBaldwin, I.T. 1988. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction.Ecology 69:267–277.Google Scholar
  49. Schultz, J.C., andLechowicz, M.J. 1986. Host plant, larval age, and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar).Oecologia 71:133–137.Google Scholar
  50. Scriber, J.M., andSlansky, F., Jr. 1981. The nutritional ecology of immature insects.Annu. Rev. Entomol. 26:183–211.Google Scholar
  51. Stafford, H.A., andLester, H.H. 1981. Proanthocyanidins and potential precursors in needles of Douglas fir and in cell suspension cultures derived from seedling shoot tissues.Plant Physiol. 68:1035–1040.Google Scholar
  52. Swain, T. 1979. Tannins and lignins, pp. 657–682,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  53. Waldbauer, G.P. 1968. The consumption and utilization of food by insects.Adv. Insect Physio!. 5:229–288.Google Scholar
  54. Yu, S.J. 1986. Consequences of induction of foreign compound-metabolizing enzymes in insects, pp. 153–174,in L.B. Brattsten and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.Google Scholar
  55. Yu, S.J. 1987. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperda) and semispecialist (Anticarsia gemmatalis) insect.J. Chem. Ecol. 13:423–436.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • G. Joseph
    • 1
  • J. C. Miller
    • 1
  • R. E. Berry
    • 1
  • J. Wernz
    • 1
  • A. F. Moldenke
    • 1
  • R. G. Kelsey
    • 1
  1. 1.Department of EntomologyOregon State UniversityCorvallis

Personalised recommendations