Journal of Chemical Ecology

, Volume 19, Issue 2, pp 369–375 | Cite as

Effects of root exudate sorgoleone on photosynthesis

  • Frank A. Einhellig
  • James A. Rasmussen
  • Angela M. Hejl
  • Itamar F. Souza
Article

Abstract

The aim of this investigation was to determine if sorgoleone (SGL), ap-benzoquinone inSorghum bicolor root exudate, is a photosynthesis inhibitor. Assays usingGlycine max leaf disks showed concentrations as low as 10μM SGL inhibited oxygen evolution more than 50%. Tests conducted on chloroplasts isolated fromPisum sativum showed that SGL is a powerful inhibitor of CO2-dependent oxygen evolution. Using a chloroplast suspension equivalent to 80–100μg chlorophyll, the I50 was approximately 0.2μM SGL. These data indicate inhibition of photosynthesis is part of the explanation for growth reduction caused by this allelochemical.

Key Words

Sorgoleone allelochemical allelopathy photosynthesis chloroplast root exudate Sorghum bicolor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris.Plant Physiol. 24:1–15.Google Scholar
  2. Berkowitz, G.A., andGibbs, M. 1982. Effect of osmotic stress on photosynthesis studies with the isolated spinach chloroplast.Plant Physiol. 70:1143–1148.Google Scholar
  3. Burton, J.D., Gronwald, J.W., Somers, D.A., Connelly, J.A., Gengenbach, B.G., andWyse, D.L. 1987. Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides Sethoxydim and Haloxyfop.Biochem. Biophys. Res. Commun. 148:1039–1044.Google Scholar
  4. Einhellig, F.A., andRasmussen, J.A. 1989. Prior cropping with grain sorghum inhibits weeds.J. Chem. Ecol. 15:951–960.Google Scholar
  5. Einhellig, F.A., andSouza, I.F. 1992. Phototoxicity of sorgoleone found in grain sorghum root exudates.J. Chem. Ecol. 18:1–11.Google Scholar
  6. Fate, G., Chang, M., andLynn, D.G. 1990. Control of germination inStriga asiatica: Chemistry of spatial definition.Plant Physiol. 93:201–207.Google Scholar
  7. Forney, D.R., Foy, C.L., andWolf, D.D. 1985. Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping of summer-annual forage grasses.Weed Sci. 33:490–497.Google Scholar
  8. Hensley, J.R. 1981. A method for identification of triazine resistant and susceptible biotypes of several weeds.Weed Sci. 29:70–73.Google Scholar
  9. Hess, D.E., Ejeta, G., andButler, L.G. 1992. Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga.Phytochemistry 31:493–497.Google Scholar
  10. Hoagland, D.R., andArnon, D.I. 1950. The water culture method for growing plants without soil.Calif. Agric. Exp. Stn. Circ. 347.Google Scholar
  11. Lilley, R.McC, Fitzgerald, M.P., Reinits, K.G., andWalker, D.A. 1975. Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations.New Phytol. 75:1–10.Google Scholar
  12. Netzly, D.H., andButler, L.G. 1986. Roots ofSorghum exude hydrophobic droplets containing biologically active components.Crop Sci. 26:775–778.Google Scholar
  13. Netzly, D.H., Riopel, J.L., Ejeta, G., andButler, L.G. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor).Weed Sci. 36:441–446.Google Scholar
  14. Overland, L. 1966. The role of allelopathic substances in “smother crop” barley.Am. J. Bot. 53:423–432.Google Scholar
  15. Panasiuk, O., Bills, D.D., andLeather, G.R. 1986. Allelopathic influence ofSorghum bicolor on weeds during germination and early development of seedlings.J. Chem. Ecol. 12:1533–1543.Google Scholar
  16. Putnam, A.R., andDeFrank, J. 1983. Use of phytotoxic plant residues for selective weed control.Crop Prot. 2:173–181.Google Scholar
  17. Putnam, A.R., DeFrank, J., andBarnes, J.P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems.J. Chem. Ecol. 8:1001–1010.Google Scholar
  18. Rasmussen, J.A., Hejl, A.M., Einhellig, F.A., andThomas, J.A. 1992. Sorgoleone from root exudate inhibits mitochondrial functions.J. Chem. Ecol. 18:197–207.Google Scholar
  19. Schutt, C., andNetzly, D. 1991. Effect of apiforol and apigeninidin on growth of selected fungi.J. Chem. Ecol. 17:2261–2266.Google Scholar
  20. Walker, D.A. 1980. Preparation of higher plant chloroplasts.Methods Enzymol. 69:94–104.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Frank A. Einhellig
    • 1
  • James A. Rasmussen
    • 2
  • Angela M. Hejl
    • 1
  • Itamar F. Souza
    • 3
  1. 1.Department of BiologyUniversity of South DakotaVermillion
  2. 2.Department of BiologySouthern Arkansas UniversityMagnolia
  3. 3.Minas Gerais Livestock and Agriculture Research InstituteLavrasBrazil

Personalised recommendations