Advertisement

Machine Learning

, Volume 15, Issue 2, pp 121–123 | Cite as

Structured connectionist systems

  • Alex Waibel
Introduction
  • 218 Downloads

References

  1. Bodenhausen, U. (1991). Learning the architecture of neural networks for speech recognition.Proceedings ICASSP (pp. 117–120) IEEE.Google Scholar
  2. Bourlard, H. & Wellekens, C.J. (1989). Links between markov models and multilayer perceptrons. D. S. Touretzky (Ed.)Advances in Neural Network Information Processing Systems, 1. San Francisco, CA: Morgan Kaufmann.Google Scholar
  3. Elman, J. L. (1990). Finding structure in time.Cognitive Science, 14, 179–211.Google Scholar
  4. Fahlman, S. & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky (Ed.)Advances in Neural Information Processing Systems, 2. San Francisco, CA: Morgan Kaufmann.Google Scholar
  5. Hanson, S. (1990). Meiosis networks. In D. S. Touretzky (Ed.)Advances in Neural Information Processing Systems, 2. San Francisco, CA: Morgan Kaufmann.Google Scholar
  6. Jordan, M. L. (1986).Serial order: A parallel distributed processing approach (Technical Report.) San Diego, CA: University of California at San Diego, Institute for Cognitive Science.Google Scholar
  7. LeCun, Y., Boder, B., Denker, J., Henderson, D., Howard, R.E., Hubbard, W., and Jackel, L.D. (1989). Handwritten digit recognition with a back-propagation network. In D. S. Touretzky (Ed.)Advances in Neural Information Processing Systems, 1. San Francisco, CA: Morgan Kaufmann.Google Scholar
  8. LeCun, Y., Denker, J., Solla, S., Howard, R.E., and Jackel, L.D. (1990). Optimal brain damage. In D. S. Touretzky (Ed.)Advances in Neural Information Processing Systems, 2. San Francisco, CA: Morgan Kaufmann.Google Scholar
  9. Masuoka, R., Watanabe, N., Kawamura, A., Owada, Y., & Asakawa, K. (1990). Neurofuzzy system—Fuzzy inference using structured neural network.Proceedings of the international conference on fuzzy logic & neural networks (pp. 173–177).Google Scholar
  10. Shavlik, J. W. & Towell, G. G. (1989). An approach to combining explanation-based and neural learning algorithms.Connection Science, 1. Reprinted in J. Shavlik & T. G. Dietterich (Eds.),Readings in Machine Learning, San Francisco, CA: Morgan Kaufmann, 828–839, 1990.Google Scholar
  11. Simard, P., Le Cun, Y., Victorri, B. & Denker, J. (1992). Tangent Prop—A formalism for specifying selectd invariances in an adaptive network. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.)Advances in neural information processing systems, 4. San Francisco, CA: Morgan Kaufmann.Google Scholar
  12. Waibel, A. (1989). Modular construction of time-delay neural networks for speech recognition.Neural Computation, I 39–46.Google Scholar
  13. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. & Lang K. (1989). Phoneme recognition using time-delay neural networks,IEEE Transactions on Acoustics, Speech and Signal Processing, 37, 328–339.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Alex Waibel
    • 1
  1. 1.Department of Computer ScienceCarnegie Mellon UniversityPittsburgh

Personalised recommendations