Neurochemical Research

, Volume 12, Issue 4, pp 369–375 | Cite as

Inability to produce a model of dialysis encephalopathy in the rat by aluminum administration

  • Thomas L. Perry
  • Voon Wee Yong
  • William J. Godolphin
  • Michelle Sutter
  • Shirley Hansen
  • Stephen J. Kish
  • James G. Foulks
  • Masatoshi Ito
Original Articles


We attempted to produce a rat model of brain aluminum toxicity in order to explore whether or not aluminum accumulation produces the neurochemical changes observed in brains of patients who die with dialysis encephalopathy. Daily subcutaneous injection of Al(OH)3 caused marked elevation of serum aluminum concentrations, but did not increase brain aluminum contents, either in rats with normal renal function, or in rats with unilateral or 5/6 nephrectomies. LiCl pretreatment, which has been reported to cause irreversible renal failure, did not impair renal function nor aid in achieving elevated brain aluminum contents. No reductions in brain contents of γ-aminobutyric acid (GABA) or in glutamic acid decarboxylase (GAD, E.C. and choline acetyltransferase (ChAT, E.C. activities were observed in aluminum-treated rats. We conclude that the rat is not a suitable laboratory animal to explore the role of aluminum toxicity in causing the GABA and ChAT deficits present in brains of hemodialyzed human patients.

Key Words

Dialysis encephalopathy aluminum toxicity brain γ-aminobutyric acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfrey, A. C., Mishell, J. M., Burks, J., Contiguglia, S. R., Rudolph, H., Lewin, E., and Holmes, J. H. 1972. Syndrome of dyspraxia and multi-focal seizures associated with chronic hemodialysis. Trans. Am. Soc. Artif. Intern. Organs 18:257–261.Google Scholar
  2. 2.
    Alfrey, A. C., LeGendre, G. R., and Kaehny, W. D. 1976. The dialysis encephalopathy syndrome: Possible aluminum intoxication. New. Engl. J. Med. 294:184–188.Google Scholar
  3. 3.
    McDermott, J. R., Smith, A. L., Ward, M. K., Parkinson, I. S., and Kerr, D. N. S. 1978. Brain aluminum concentration in dialysis encephalopathy. Lancet 1:901–904.Google Scholar
  4. 4.
    Rozas, V. V., Port, F. K., and Rutt, W. M. 1978. Progressive dialysis encephalopathy from dialysate aluminum. Arch. Intern. Med. 138:1375–1377.Google Scholar
  5. 5.
    Dunea, G., Mahurkar, S. D., Mamdani, B., and Smith, E. C. 1978. The role of aluminum in dialysis dementia. Ann. Intern. Med. 88:502–504.Google Scholar
  6. 6.
    Perry, T. L., Yong, V. W., Kish, S. J., Ito, M., Foulks, J. G., Godolphin, W. J., and Sweeney, V. P. 1985. Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis. J. Neurochem. 45:1043–1048.Google Scholar
  7. 7.
    Sweeney, V. P., Perry, T. L., Price, J. D. E., Reeve, C. E., Godolphin, W. J., and Kish, S. J. 1985. γ-Aminobutyric acid deficiency in dialysis encephalopathy. Neurology 35:180–184.Google Scholar
  8. 8.
    Arieff, A. I., Cooper, J. D., Armstrong, D., and Lazarowitz, V. C., 1979. Dementia, renal failure, and brain aluminum. Ann. Intern. Med. 90:741–747.Google Scholar
  9. 9.
    Alfrey, A. C., Hegg, A., and Craswell, P. 1980. Metabolism and toxicity of aluminum in renal failure. Am. J. Clin. Nutrit. 33:1509–1516.Google Scholar
  10. 10.
    Christensen, S., and Ottosen, P. D. 1983. Lithium-induced uremia in rats—A new model of chronic renal failure. Pflugers Arch. 399:208–212.Google Scholar
  11. 11.
    Perry, T. L., Hansen, S., and Gandham, S. S. 1981. Postmortem changes of amino compoundsin human and rat brain. J. Neurochem. 36:406–412.Google Scholar
  12. 12.
    Leung, F. Y., and Henderson, A. R. 1982. Improved determination of aluminum in serum and urine with use of a stabilized temperature platform furnace. Clin. Chem. 28:2139–2143.Google Scholar
  13. 13.
    Slavin, W., Carnrick, G. R., Manning, D. C., and Pruszkowska, E. 1983. Recent experiences with the stabilized temperature platform furnace and Zeeman background correction. At. Spectrosc. 4:69–86.Google Scholar
  14. 14.
    LeGendre, G. R., and Alfrey, A. C. 1976. Measuring picogram amounts of aluminum in biological tissue by flameless atomic absorption analysis of a chelate. Clin. Chem. 22:53–56.Google Scholar
  15. 15.
    Sansoni, B., and Iyengar, G. V. 1980. Sampling and storage of biological materials for trace element analysis. Pages 57–76 in Elemental Analysis of Biological Materials, Vienna, International Atomic Energy Agency.Google Scholar
  16. 16.
    Julshamn, K., and Andersen, K.-J. 1979. A study on the digestion of human muscle biopsies for trace metal analysis using an organic tissue solubilizer. Anal. Biochem. 98:315–318.Google Scholar
  17. 17.
    Stevens, B. J. 1984. Electrothermal atomic absorption determination of aluminum in tissues dissolved in tetramethylammonium hydroxide. Clin. Chem. 30:745–747.Google Scholar
  18. 18.
    Perry, T. L., Stedman, D., and Hansen, S. 1968. A versatile lithium buffer elution system for single column automatic amino acid chromatography. J. Chromatogr. 38:460–466.Google Scholar
  19. 19.
    Perry, T. L., Kish, S. J. and Hansen, S. 1979. γ-Vinyl GABA: Effects of chronic administration on the metabolism of GABA and other amino compounds in rat brain. J. Neurochem. 32:1641–1645.Google Scholar
  20. 20.
    Roberts, E., and Simonsen, D. G. 1963. Some properties ofl-glutamic decarboxylase in mouse brain. Biochem. Pharmacol. 12:113–134.Google Scholar
  21. 21.
    Fonnum, F. 1975. A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24:407–409.Google Scholar
  22. 22.
    Perry, T. L., Yong, V. W., Ito, M., Foulks, J. G., Wall, R. A., Godin, D. V., and Clavier, R. M. 1984. Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses ofl-DOPA and carbidopa chronically. J. Neurochem. 43:990–993.Google Scholar
  23. 23.
    Berlyne, G. M., Ben Ari, J., Knopf, E., Yagil, R., Weinberger, G., and Danovitch, G. M. 1972. Aluminium toxicity in rats. Lancet 1:564–568.Google Scholar
  24. 24.
    Wenk, G. L., and Stemmer, K. L. 1983. Suboptimal dietary zinc intake increases aluminum accumulation into the rat brain. Brain Res. 288:393–395.Google Scholar
  25. 25.
    Bowdler, N. C., Beasley, D. S., Fritze, E. C., Goulette, A. M., Hatton, J. D., Hession, J., Ostman, D. L., Rugg, D. J., and Schmittdiel, C. J. 1979. Behavioral effects of aluminum ingestion on animal and human subjects. Pharmacol. Biochem. Behavior 10:505–512.Google Scholar
  26. 26.
    Mayor, G. H., Sprague, S. M., Hourani, M. R., and Sanchez, T. V. 1980. Parathyroid hormone-mediated aluminum deposition and egress in the rat. Kidney Internat. 17:40–44.Google Scholar
  27. 27.
    Minczewski, J., Chwastowska, J., and Dybczynski, R. 1982. Separation and Preconcentration Methods in Inorganic Trace Analysis, Chichester, Ellis Horwood Ltd.Google Scholar
  28. 28.
    Persson, J.-A., Frech, W., and Cedergren, A. 1977. Investigations of reactions involved in flameless atomic absorption procedures. Anal. Chim. Acta 92:85–93.Google Scholar
  29. 29.
    Goode, G. C., Herrington, J., and Goddard, P. C. 1977. Neutron activation analysis for aluminium in bone and tissue samples. Radiochem. Radioanal. Lett. 31:87–94.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Thomas L. Perry
    • 1
  • Voon Wee Yong
    • 1
  • William J. Godolphin
    • 2
  • Michelle Sutter
    • 1
  • Shirley Hansen
    • 1
  • Stephen J. Kish
    • 3
  • James G. Foulks
    • 1
  • Masatoshi Ito
    • 1
  1. 1.Department of Pharmacology & TherapeuticsThe University of British ColumbiaVancouverCanada
  2. 2.Department of PathologyThe University of British ColumbiaVancouverCanada
  3. 3.Clarke Institute of PsychiatryTorontoCanada

Personalised recommendations