Neurochemical Research

, Volume 12, Issue 4, pp 315–321 | Cite as

Day-night cycle of lipidic composition in rat cerebral cortex

  • Mauricio Díaz-Muñoz
  • Jorge Suárez
  • Rolando Hernández-Muñoz
  • Victoria Chagoya de Sánchez
Original Articles


A study of the lipidic pattern of the cerebral cortex of the normal adult rat during the daynight cycle was carried out. The changes observed were the following: phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine plus phosphatidic acid showed a peak at 16:00 hr possibly due to a general increase in phospholipid biosynthesis. During the nocturanl period the variations of phosphatidylcholine and phosphatidylethanolamine were not clearly observe, they might be due to an increase in the interconversion or exchange reaction, since the ratio phosphatidylcholine/phosphatidylethanolamine showed a significative change at 04:00 hr. This occurred because small but opposite changes in both phospholipids were observed, suggesting an increase in the methylation reactions of phospholipids. Cardiolipin showed a significant peak at 04:00 hr. Plasmalogens exhibited significative changes, an important diminution at 16:00 hr and a prominent peak at 24:00 hr. Cholesterol levels were high during the light period and low in the dark one. Cerebrosides and gangliosides showed no day-night variations. The changes observed indicate a phenomenon of biological rhythmicity synchronized by the photoperiod, suggesting that these fluctuations could act as physiological modulators of the properties and functions of the nerve cell membrane.

Key Words

Day-night cycle brain lipids cerebral cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suzuki, K. 1976. Chemistry and metabolism of brain lipids. Pages 308–328. in Siegel, G. J. Albers R. W., Katzman R., Agranoff, B. W. (eds). Basic Neurochemistry. Little Brown and Company, Boston.Google Scholar
  2. 2.
    Moscatelli, E. A., and Demediuk, P. 1980. Effects of chronic consumption of ethanol and low-thiamine, low-protein diet on the lipid composition of rat whole brain and brain membranes. Biochem. Biophys. Acta 596:331–337.Google Scholar
  3. 3.
    Chin, J. H., Parson, L. M., and Goldstein, D. B. 1978. Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice. Biochem. Biophys. Acta 513:358–363.Google Scholar
  4. 4.
    Littleton, J. M., and John, G. 1977. Synaptosomal membrane lipids of mice during continuous exposure to ethanol. J. Pharmac. 29:579–580.Google Scholar
  5. 5.
    Díaz-Muñoz, M., Hernández-Muñoz, R., Suárez, J., Chagoya de Sánchez, V. 1985. Day-night cycle of lipid peroxidation in rat cerebral cortex and their relationship to the glutathione cycle and superoxide dismutase activity. Neuroscience 16:859–863.Google Scholar
  6. 6.
    Saito, Y., Yamashita, I., Yamazaki, K., Okada, F., Satomi, R., and Fujieda, T. 1975. Circadian fluctuation of brain acetylcholine in rats. Life Sci. 16:281–288.Google Scholar
  7. 7.
    Fuchs, J. L., and Moore, R. Y. 1980. Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: A study using the 2-deoxy(1-14C)glucose method. Proc. Natl. Acad. Sci. US 77:1204–1208.Google Scholar
  8. 8.
    Noda, Y., McGeer, P. L., and McGeer, E. G. 1983. Lipid peroxide distribution in the rat brain and the effect of hyperbaric oxygen. J. Neurochem. 40:1329–1332.Google Scholar
  9. 9.
    Hough, L. B., Khandelwal, J. K., and Green, J. K. 1984. Histamine turnover in regions of rat brain. Brain Res. 291:103–109.Google Scholar
  10. 10.
    Chagoya de Sánchez, V., Hernández-Muñoz R., Díaz-Muñoz, M., Suárez, J., Vidrio, S., and Yañez, L. 1983. Circadian variations of adenosine and its physiological meaning in the energetic homeostasis of the cell and the sleep-wake cycle of the rat. In Proc. 4th. Int. Congr. Sleep. Res. 255 Bologna, Italy.Google Scholar
  11. 11.
    Chagoya de Sánchez, V., Hernández-Muñoz, R., Díaz-Muñoz, R., Díaz-Muñoz, M., Villalobos, R., Glender, W., Vidrio, S., Suárez, J., and Yañez, L. 1983. Circadian variations of adenosine level in blood and liver and its possible physiological significance. Life Sci. 33:1057–1064.Google Scholar
  12. 12.
    Folch, J., Lees, M., and Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.Google Scholar
  13. 13.
    García-Sáinz, J. A., and Fain, J. N. 1980. Effect of insulin, catecholamines and calcium ions on phospholipid metabolism in isolated white fat cells. Biochem. J. 186:781–789.Google Scholar
  14. 14.
    Ames, L. 1960. Analysis of phosphate in a lipid sample from animal tissue. J. Biol. Chem. 235:769–775.Google Scholar
  15. 15.
    Pries, C., and Bottcher, C. J. F. 1965. The determination of free and plasmalogen-bound aldehydes in lipid fraction. Biochim. Biophys Acta 98:329–334.Google Scholar
  16. 16.
    Abell, L. L., Levy, B. B., Brodie, B. B., and Kendall, F. E. 1952. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J. Biol. Chem. 195:357–366.Google Scholar
  17. 17.
    Hess, H. H., and Lewin, E. 1965. Microassay of biochemical structural components in nervous tissues-II. J. Neurochem. 12:205–211.Google Scholar
  18. 18.
    Svennerholm, L. 1957. Quantitative estimation of sialic acids. Biochim. Biophys Acta 24:604–611.Google Scholar
  19. 19.
    Dreyfus, H., Harth, S., Giulani-Debernardi, A., Roos, M., Mack, G., and Mandel, P. 1982. Gangliosides in various brain areas of three inbred strains of mice. Neurochem. Res. 7:477–487.Google Scholar
  20. 20.
    Jacobs, E. J. 1956. Uncoupling of oxidative phosphorylation by cadmium ion. J. Biol. Chem. 223:147–156.Google Scholar
  21. 21.
    Scheffé, H. 1953. A method for judging all contrasts in the analysis of variance. Biometrika, 40:87–104.Google Scholar
  22. 22.
    Mann, H. B., and Whitney, D. R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist., 18:50–60.Google Scholar
  23. 23.
    Ansell, G. B. and Spanner, S. 1968. The metabolism of (Me14C) choline in the brain of the rat in vivo. Biochem. J. 110:201–206.Google Scholar
  24. 24.
    Ansell, G. B. and Spanner, S. 1967. The metabolism of labelled ethanolamine in the brain of the rat in vivo. J. Neurochem. 14:873–885.Google Scholar
  25. 25.
    Porcellati, G., Biasion, M. G., and Arienti, G. 1970. Incorporation of phosphorylethanolamine into phospholipids of brain microsomes in vitro. Lipids 5:725–733.Google Scholar
  26. 26.
    Ansell, G. B., and Metcalfe, R. F. 1971. Studies on the CDP-ethanolamine 1,2 dyglyceride ethanolamine phosphotransferase of rat brain. J. Neurochem. 18:647–665.Google Scholar
  27. 27.
    Dawson, R. M. C. 1985. Enzymic pathways of phospholipid metabolism in the nervous system. Pages 45–73 in Eichberg, J. (ed.) Phospholipids in nervous tissue. John Wiley and Sons.Google Scholar
  28. 28.
    Chojnacki, T., Korzybski, T., and Ansell, G. B. 1964. The methylation of natural and unnatural analogues of32P-labelled phosphatidyl-ethanolamine by brain and liver tissue. Biochem. J. 90:18–19.Google Scholar
  29. 29.
    Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D. 1971. Base-exchange reactions for the synthesis of phospholipids in nervous tissue: the incorporation of serine and ethanolamine into the phospholipid of isolated brain microsomes. J. Neurochem. 18:1395–1417.Google Scholar
  30. 30.
    Kanfer, J. N. 1972. Base exchange reaction of the phospholipids in rat brain particles. J. Lipid. Res. 13:468–476.Google Scholar
  31. 31.
    Yavin, E., and Zeigler, B. P. 1977. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. J. Biol. Chem. 252:260–267.Google Scholar
  32. 32.
    Holub, B. J. 1975. Microsomal phosphatidylinositol. Lipids 10:483–490.Google Scholar
  33. 32.
    Leprohon, C. E., Blusztajn, J. K., and Wurtman, R. J. 1983. Dopamine stimulation of phosphatidylcholine (lecithin) biosynthesis in rat brain neurons. Proc. Natl. Acad. Sci. US 80:2063–2066.Google Scholar
  34. 34.
    Lapetina, E. G., and Michell, R. H. 1972. Stimulation by acetylcholine of phosphatidylinositol labelling. Subcellular distribution in rat cerebral-cortex slices. Biochem. J. 126:1141–1147.Google Scholar
  35. 35.
    Masoro, E. J. 1968. The function of lipids in membranes of mammalian cells. Pages 274–292 in Saunders, W. B. (ed.) Physiological Chemistry of lipids in mammals. W. B. Saunder Co. London.Google Scholar
  36. 36.
    Benjamins, J. A., and McKhann, G. M. 1976. Development, regeneration and aging. Pages 365–387, in Siegel, G. J. Albers, R. W., Katzman, R. and Agranoff, B. W. (eds). Basic neurochemistry. Little, Brown and Company, Boston.Google Scholar
  37. 37.
    Hanin, I., Massarelli, R., and Costa, E. 1970. Acetylcholine concentrations in rat brain. Science 170:341–342.Google Scholar
  38. 38.
    Friedman, A. H. and Walker, C. A. 1969. Circadian rhythm in central acetylcholine and the toxicity of cholinergic drugs. Fed. Proc. 28:251.Google Scholar
  39. 39.
    Hirata, F., Axelrod, J., and Strittmatter, J. 1979. Methylation of membrane phospholipids. Pages 233–240, in Usdin E, Borchardt R. T. Creveling, C. R. (eds). Transmethylation, Elsevier North Holland, New York.Google Scholar
  40. 40.
    Sanderman, H. 1978. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515:209–237.Google Scholar
  41. 41.
    Heron, D. S., Shinitzky, M. Hershkowitz, M., and Samuel, D. 1980. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc. Natl. Acad. Sci. US. 77:7463–7467.Google Scholar
  42. 42.
    Crews, F. T., Camacho, A., Phillips, I., Tjeenk Willink, E. C., Calderini, G., Hirata, F., Axelrod, J., McGivney, A., and Siraganian, R. 1982. Effects of membrane fluidity on mast cell and nerve cell function. Pages 21–35, in Horrocks L. et al., (eds). Phospholipids in the nervous system, Vol I. Raven Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Mauricio Díaz-Muñoz
    • 1
  • Jorge Suárez
    • 1
  • Rolando Hernández-Muñoz
    • 1
  • Victoria Chagoya de Sánchez
    • 1
  1. 1.Departamento de Bioenergética, Instituto de Fiosiología CelcularUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations