Journal of Chemical Ecology

, Volume 18, Issue 9, pp 1603–1621 | Cite as

Optimal fractionation and bioassay plans for isolation of synergistic chemicals: The subtractive-combination method

  • John A. Byers


Studies of chemical ecology of an organism are founded on the isolation and identification of a semiochemical, often comprised of two or more synergistic compounds (each Synergist alone has little activity, but presented together they are bioactive). Chromatographie fractionation and bioassay methods of binary splitting, additive combination, and subtractive combination are compared for efficiency in isolating synergists. Formulas are derived for the latter two methods that calculate the expected number of bioassay tests required for isolation of from two to five synergists from biological extracts with any number of compounds, depending on the number of initial (major) Chromatographic fractions. A computer program based on the formulas demonstrates the superiority of the subtractive-combination method. Simulations with the program were used to determine the optimal number of initial fractions for the additive- and subtractive-combination methods when isolating two to five synergists from extracts of from 25 to 1200 compounds. Methods of bioassay, isolation, identification, and field testing of semiochemicals are discussed.

Key words

Pheromone semiochemical behavioral bioassay chemical isolation gas chromatography chemical fractionation Synergist 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, T.C. 1989, Sex pheromone communication in the Lepidoptera: New research progress.Experientia 45:248–262.Google Scholar
  2. Baker, T.C., CardÉ, R.T., andRoelofs, W.L. 1976. Behavioral responses of maleArgyrotaenia velutinana (Lepidoptera: Tortricidae) to components of its sex pheromone.J. Chem. Ecol. 2:333–352.Google Scholar
  3. Blaney, W.M., andSimmonds, M.S.J. 1990. The chemoreceptors. pp. 1–37,in R.F. Chapman and A. Joern (eds.). Biology of Grasshoppers. John Wiley & Sons, New York.Google Scholar
  4. Bengtsson, M., Liljefors, T., Hansson, B.S., LÖfstedt, C., andCopaja, S.V. 1990. Structureactivity relationships for chain-shortened analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum.J. Chem. Ecol. 16:667–684.Google Scholar
  5. Booij, C.J.H., andVoerman, S. 1985. New lepidopteran sex attractants found by systematic field screening of blends containing (Z)-ll-and (E)-11-tetradecenal.J. Chem. Ecol. 11:1333–1339.Google Scholar
  6. Briggs, M.A. 1990. Relation ofSpodoptera eridania choice to tannins and protein ofLotus corniculatus.J. Chem. Ecol. 16:1557–1564.Google Scholar
  7. Brown, V., Jaisson, P., Taylor, R.W., andLacey, M.J. 1990. Novel internally branched, internal alkenes as major components of the cuticular hydrocarbons of the primitive Australian antNothotnyrmecia macrops Clark (Hymenoptera: Formicidae).J. Chem. Ecol. 16:2623–2635.Google Scholar
  8. Byers, J.A. 1988. Novel diffusion-dilution method for release of semiochemicals: Testing pheromone component ratios on western pine beetle.J. Chem. Ecol. 14:199–212.Google Scholar
  9. Byers, J.A. 1989. Chemical ecology of bark beetles.Experientia 45:271–283.Google Scholar
  10. Byers, J.A. 1991. Pheromones and chemical ecology of locusts.Biol. Rev. 66:347–378.Google Scholar
  11. Byers, J.A. 1992. Trends in chemical ecology revealed with a personal computer program for searching data bases of scientific references and abstracts.J. Chem. Ecol. 18:1481–1495.Google Scholar
  12. Byers, J.A., Lanne, B.S., Schlyter, F., LÖfqvist, J., andBergstrÖm, G. 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles.Naturwissenschaften 72:324–326.Google Scholar
  13. Byers, J.A., Birgersson, G., LÖfqvist, J., andBergstrÖm, G. 1988. Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle.Naturwissenschaften 75:153–155.Google Scholar
  14. Byers, J.A., HÖgberg, H.E., Unelius, R., Birgersson, G., andLÖfqvist, J. 1989. Structureactivity studies on aggregation pheromone components ofPityogenes chalcographus (Coleoptera: Scolytidae): All stereoisomers of chalcogran and methyl 2,4-decadienoate.J. Chem. Ecol. 15:685–695.Google Scholar
  15. Byers, J.A., Birgersson, G., Öfqvist, J., Appelgren, M. andBergstrom, G.1990a. Isolation of pheromone synergists of bark beetle,Pityogenes chalcographus, from complex insect-plant odors by fractionation and subtractive-combination bioassay.J. Chem. Ecol. 16:861–876.Google Scholar
  16. Byers, J.A., Schlyter, F., Birgersson, G., andFrancke, W. 1990b.E-Myrcenol inIps duplicatus: An aggregation pheromone component new for bark beetles.Experientia 46:1209–1211.Google Scholar
  17. CardÉ, R.T., andBaker, T.C. 1984. Sexual communication with pheromones, pp. 355–383, in W.T. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, New York.Google Scholar
  18. De Jong, M.C.M. 1987. A direct search approach to characterize the sex pheromone composition giving maximal male response.Physiol. Entomol. 12:11–21.Google Scholar
  19. Dicke, M., Van Lenteren, J.C., Boskamp, B.J.F., Van Voorst, R. 1985. Intensification and prolongation of host searching inLeptopilina heterotoma (Thompson) (Hymenoptera: Eucoilidae) through a kairomone produced byDrosophila melanogaster.J. Chem. Ecol. 11:125–136.Google Scholar
  20. Dickens, J.C., Payne, T.L., Ryker, L.C., andRudinsky, J.A. 1985. Multiple acceptors for pheromonal enantiomers on single olfactory cells in the Douglas-fir beetle,Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae.J. Chem. Ecol. 11:1359–1370.Google Scholar
  21. Duffield, R.M., Simon-Jordan, C., Riddick, E.W., andWheeler, J.W. 1990. Exocrine secretions of bees X. 3,7-dimethyldeca-2,6-dien-l,10-diol: A sex-specific compound fromNomada annulata (Hymenoptera: Anthophoridae).J. Chem. Ecol. 16:1069–1076.Google Scholar
  22. Fuzeau-Braesch, S., Genin, E., Jullien, R., Knowles, E., andPapin, C. 1988. Composition and role of volatile substances in atmosphere surrounding two gregarious locusts,Locusta migratoria andSchistocerca gregaria.J. Chem. Ecol. 14:1023–1033.Google Scholar
  23. Greenwood, M., andChapman, R.F. 1984. Differences in numbers of sensilla on the antennae of solitarious and gregariousLocusta migratoria L. (Orthoptera: Acrididae).Int. J. Insect Morphol. Embryol. 13:295–301.Google Scholar
  24. Hanula, J.L., Berisford, C.W., andDeBarr, G.L. 1985. Monoterpene oviposition stimulants ofDioryctria amatella in volatiles from fusiform rust galls and second-year loblolly pine cones.J. Chem. Ecol. 11:943–952.Google Scholar
  25. Honda, K. 1990. Identification of host-plant chemicals stimulating oviposition by swallowtail butterfly,Papilio protenor.J. Chem. Ecol. 16:325–337.Google Scholar
  26. Imai, T., Kodama, H., Chuman, T., andKohno, M. 1990. Female-produced oviposition deterrents of the cigarette beetle,Lasioderma serricorne (F.(Coleoptera: Anobiidae).J. Chem. Ecol. 16:1237–1247.Google Scholar
  27. Jutsum, A.R., andGordon, R.F.S. 1989.Insect Pheromones in Plant Protection. John Wiley & Sons, New York.Google Scholar
  28. Kim, M., Koh, H.S., andFukami, H. 1985. Isolation of C-glycosylflavones as probing stimulant of planthoppers in rice plant.J. Chem. Ecol. 11:441–452.Google Scholar
  29. Lanne, B.S., Schlyter, F., Byers, J.A., Löfqvist, J., LeufvÉn, A., Bergström, G., Van Der Pers, J.N.C., Unelius, R., Baeckström, P., andNorin, T. 1987. Differences in attraction to semiochemicals present in sympatric pine shoot beetles,Tomicus minor andT. piniperda.J. Chem. Ecol. 13:1045–1067.Google Scholar
  30. Maeshima, K., Hayashi, N., Murakami, T., Takahashi, F., andKomae, H. 1985. Identification of chemical oviposition stimulants from rice grain forSitophilus zeamais Motschulsky (Coleoptera, Curculionidae).J. Chem. Ecol. 11:1–10.Google Scholar
  31. McAll, R.B. 1970. Fundamental Statistics for Psychology. Harcourt, Brace & World, New York. 419 pp.Google Scholar
  32. McKbben, G.H., Thompson, M.J., Parrott, W.L., Thompson, A.C. andLusby, W.R. 1985. Identification of feeding stimulants for boll weevils from cotton buds and anthers.J. Chem. Ecol. 11:1229–1238.Google Scholar
  33. Millar, J.G., Pierce, H.D., Jr., Pierce, A.M., Oehlschlager, A.C., Borden, J.H., andBarak, A.V. 1985. Aggregation pheromones of the flat grain beetle,Cryptolestes pusillus (Coleoptera: Cucujidae).J. Chem. Ecol. 11:1053–1070.Google Scholar
  34. Millar, J.G., Giblin, M., Barton, D., andUnderbill, E.W. 1990. 3Z,6Z,9Z-Trienes and unsaturated epoxides as sex attractants for geometrid moths.J. Chem. Ecol. 16:2307–2316.Google Scholar
  35. Mustaparta, H., Angst, M.E., andLamer, G.N. 1980. Receptor discrimination of enantiomers of the aggregation pheromone ipsdienol, in two species ofIps.J. Chem. Ecol. 6:689–701.Google Scholar
  36. Nolte, D.J., Eggers, S.H., andMay, I.R. 1973. A locust pheromone: Locustol.J. Insect Physiol. 19:1547–1554.Google Scholar
  37. Payne, T.L., Coster, I.E., Richerson, J.V., Hart, E.R., Hedden, R.L., andEdson, L.J. 1978. Reducing variation in field tests of behavioral chemicals for the southern pine beetle.J. G. Entomol. Soc. 13:85–90.Google Scholar
  38. Pearce, G.T., Gore, W.E., Silverstein, R.M., Peacock, J.W., Cuthbert, R.A., Lanier, G.N., andSimeone, J.B. 1975. Chemical attractants for the smaller European elm bark beetle,Scolytus multistriatus (Coleoptera: Scolytidae).J. Chem. Ecol. 1:115–124.Google Scholar
  39. Renwick, J.A.A., Hughes, P.R., andKrull, I.S. 1976. Selective production ofcis- andtrans-verbenol from (−)- and (+)-19a-pinene by a bark beetle.Science 191:199–201.Google Scholar
  40. Riba, M., Rosell, J.A., Eizaguirre, M., Canela, R., andGuerrero, A. 1990. Identification of a minor component of the sex pheromone ofLeucoptera malifoliella (Lepidoptera, Lyonetiidae).J. Chem. Ecol. 16:1471–1483.Google Scholar
  41. Ridgway, D.R., Silverstein, R.M., andInscoe, M.N. 1990. Behavior-modifying Chemicals for Insect Management. Application of Pheromones and other Attractants. Marcel Dekker, New York.Google Scholar
  42. Schlyter, F., Byers, J.A., andLöfqvist, J.A. 1987. Attraction to pheromone sources of different quantity, quality and spacing: Density-regulation mechanisms in the bark beetleIps typographus.J. Chem. Ecol. 13:1503–1523.Google Scholar
  43. Shu, S., Swedenborg, P.D., andJones, R.L. 1990. A kairomone forTrichogramma nubilale (Hymenoptera: Trichogrammatidae) isolation, identification, and synthesis.J. Chem. Ecol. 16:521–529.Google Scholar
  44. Silverstein, R.M. 1981. Pheromones: Background and potential for use in insect pest control. Science 213:1326–1332.Google Scholar
  45. Silverstein, R.M., andYoung, J.C. 1976. Insects generally use multi-component pheromones, pp. 1–29,in M. Beroza (ed.). Pest Management With Insect Sex Attractants and Other Behavior-Controlling Chemicals.American Chemical Society Symposium Series, 23, Washington, D.C.Google Scholar
  46. Silverstein, R.M., Rodin, J.O., andWood, D.L. 1966. Sex attractants in frass produced by maleIps confusus in ponderosae pine.Science 154:509–510.Google Scholar
  47. Silverstein, R.M., Rodin, J.O., andWood, D.L. 1967. Methodology for isolation and identification of insect pheromones with reference to studies on California five-spinedIps.J. Econ. Entomol. 60:944–949.Google Scholar
  48. Silverstein, R.M., Brownlee, R.G., Bellas, T.E., Wood, D.L., andBrowne, L.E. 1968. Brevicomin: Principal sex attractant in the frass of the female western pine beetle.Science 159:889–891.Google Scholar
  49. Sreng, L. 1990. Seducin, male sex pheromone of the cockroachNauphoeta cinerea: Isolation, identification, and bioassay.J. Chem. Ecol. 16:2899–2912.Google Scholar
  50. Stubbs, M.R., Chambers, J., Schofield, S.B., Wilkins, J.P.G. 1985. Attractancy toOryzaephilus surinamensis (L.) of volatile materials isolated from vacuum distillate of heat-treated carobs.J. Chem. Ecol. 11:565–581.Google Scholar
  51. Takahashi, S., Hajika, M., Takabayashi, J., andFukui, M. 1990. Oviposition stimulants in the coccoid cuticular waxes ofAphytis yanonensis De Bach & Rosen.J. Chem. Ecol. 16:1657–1665.Google Scholar
  52. Van Der Pers, J.N.C., andLöfstedt, C. 1986. Signal-response relationship in sex pheromone communication, pp. 235–241,in T.L. Payne, M.C. Birch, and C.E.J. Kennedy (eds.). Mechanisms in Insect Olfaction. Clarendon Press, Oxford, U.K.Google Scholar
  53. Vité, J.P., andRenwick, J.A.A. 1971. Differential diagnosis and isolation of population attractants.Contrib. Boyce Thompson Insl. 24:323–328.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • John A. Byers
    • 1
  1. 1.Pheromone Research Group Department of EcologyAnimal Ecology Lund UniversityLundSweden

Personalised recommendations