Searching and encoding for infinite ordered sets

  • Quentin F. Stout


We consider the relationships between binary search algorithms and binary prefix encodings of infinite linearly ordered sets. It is known that each search algorithm determines a prefix code, and in three cases we show to what extent the converse is true. For sets similar to the natural numbers we show that search-related codes are as flexible as all prefix codes, while for general ordered sets they are only asymptotically as flexible.

Key words

Unbounded search prefix codes search codes linear order infinite sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “On finding lowest common ancestors in trees,”SIAM J. Comput., Vol. 5, pp. 115–132, 1976.Google Scholar
  2. 2.
    J. L. Bentley and A. C. Yao, “An almost optimal algorithm for unbounded searching,”Info. Proc. Let., Vol. 5, pp. 82–87, 1976.Google Scholar
  3. 3.
    D. W. Boyd, “The asymptotic number of solutions of a diophantine equation from coding theory,”J. Comb. Theory Ser. A, Vol. 18, pp. 210–215, 1975.Google Scholar
  4. 4.
    J. H. Conway,On Numbers and Games (London, Academic Press, 1976).Google Scholar
  5. 5.
    P. Elias, “Universal codeword sets and representations of the integers,”IEEE Trans. Info. Theory, Vol. 21, pp. 194–203, 1975.Google Scholar
  6. 6.
    S. Even,Algorithmic Combinatorics (New York, Macmillan, 1973).Google Scholar
  7. 7.
    M. Rodeh, “Economical encodings of commas between strings,”Comm. ACM, Vol. 21, pp. 315–317, 1978.Google Scholar
  8. 8.
    R. G. Gallager,Information Theory and Reliable Communication (New York, Wiley, 1968).Google Scholar
  9. 9.
    R. G. Gallager and D. C. van Vorhis, “Optimal source codes for geometrically distributed integer alphabets,”IEEE Trans. Info. Theory, Vol. 21, pp. 228–230, 1975.Google Scholar
  10. 10.
    S. W. Golomb, “Run-length encodings,”IEEE Trans. Info. Theory, Vol. 12, pp. 399–401, 1966.Google Scholar
  11. 11.
    S. W. Golomb, “Sources which maximize the choice of a Huffman coding tree,”Info. and Control, Vol. 45, pp. 263–272, 1980.Google Scholar
  12. 12.
    D. Harel, “A linear time algorithm for the lowest common ancestor problem,” 21st Annual Symp. on Foundations of Computer Science (New York, I.E.E.E., 1980), pp. 308–319.Google Scholar
  13. 13.
    D. E. Knuth,The Art of Computer Programming, Vol. 3, Searching and Sorting (Reading, Addison-Wesley, 1973).Google Scholar
  14. 14.
    D. E. Knuth,Surreal Numbers (Reading, Addison-Wesley, 1974).Google Scholar
  15. 15.
    V. E. Levenshtein, “On the redundacy and delay of separable codes for the natural numbers (Russian),”Problemy Kibernetiki, Vol. 20, pp. 173–179, 1968.Google Scholar
  16. 16.
    D. Maier, “An efficient methods for storing ancestor information in trees,”SIAM J. Comput., Vol. 8, pp. 599–618, 1979.Google Scholar
  17. 17.
    R. E. Miller and A. L. Rosenberg, “On computing distances between leaves in a complete tree,”Int. J. Computer Math. Sec. A, Vol. 8, pp. 289–301, 1980.Google Scholar
  18. 18.
    C. H. Papadimitriou, “Efficient search for rationals,”Info. Proc. Let., Vol. 8, pp. 1–4, 1979.Google Scholar
  19. 19.
    J. E. Raoult and J. Vuillemin, “Optimal unbounded search strategies,”Automata, Languages and Programming, Seventh Colloquium, Noordwijkerhout, July 1980, (Berlin, Springer-Verlag, 1980), pp. 512–530.Google Scholar
  20. 20.
    S. P. Reiss, “Rational search,”Info. Proc. Let., Vol. 8, pp. 89–90, 1979.Google Scholar
  21. 21.
    M. Rodeh, V. R. Pratt, and S. Even, “Linear algorithm for data compression via string matching,”Journal ACM, Vol. 28, pp. 16–24, 1981.Google Scholar
  22. 22.
    W. Sierpinski,Cardinal and Ordinal Numbers, 2nd Ed., Revised (Warsaw; Panstowe Wydawnictwo Naukowe, 1965).Google Scholar
  23. 23.
    Q. F. Stout, “Improved prefix encodings of the natural numbers,”IEEE Trans. Info. Theory, Vol. 26, pp. 607–609, 1980.Google Scholar
  24. 24.
    Q. F. Stout, “Efficient search-based encodings of the natural numbers,” to appear.Google Scholar
  25. 25.
    Q. F. Stout, “Infinite trees and the Kraft-MacMillan equation,” to appear.Google Scholar
  26. 26.
    M. M. Zuckerman,Sets and Transfinite Numbers (New York, Macmillan, 1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Quentin F. Stout
    • 1
  1. 1.Mathematical SciencesState University of New YorkBinghamton

Personalised recommendations