Acta Applicandae Mathematica

, Volume 38, Issue 1, pp 109–129 | Cite as

Large deviations for martingales with some applications

  • A. Račkauskas


Let(X i ) be a martingale difference sequence. LetY be a standard normal random variable. We investigate the rate of uniform convergence
$$P\left\{ {\sum\limits_{k = 1}^n {X_k } > \sqrt n r} \right\}/P\{ Y > r\} \to 0asn \to \infty ,$$
asn → ∞, over 0⩽r⩽o(n1/6) in the case of bounded martingale differences. The results are applied to prove large deviations for the ‘baker transformation’. Moderate deviations for martingales are also discussed.

Mathematics subject classifications (1991)

60F10 60G42 Key words Central limit theorem large deviations martingales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentkus, V.: On large deviations in Banach spaces,Theory Probab. Appl. 31 (1986), 710–716.Google Scholar
  2. 2.
    Bentkus, V. and Račkauskas, A.: On probabilities of large deviations in Banach spaces,Probab. Theory Related Fields 86 (1990), 131–154.Google Scholar
  3. 3.
    Bose, A.: Certain non-uniform rates of convergence to normality for a restricted class of martingales,Stochastics 16 (1986), 279–294.Google Scholar
  4. 4.
    Bolthausen, E.: Exact convergence rates in some martingale central limit theorems,Ann. Probab. 10 (1982), 672–688.Google Scholar
  5. 5.
    Haeusler, E.: On the Lindeberg-Levy-method for proving central limit theorems,Statistics and Decisions. Supplement Issue 2 (1985), 75–81.Google Scholar
  6. 6.
    Haeusler, E.: On the rate of convergence in the central limit theorem for martingales with discrete and continuous time,Ann. Probab. 16 (1988), 275–299.Google Scholar
  7. 7.
    Haeusler, E. and Joos, K.: A nonuniform bound on the rate of convergence in the central limit theorem for martingales,Ann. Probab. 17 (1989), 1690–1720.Google Scholar
  8. 8.
    Hall, P. and Heyde, C:Martingale Limit Theory and its Applications, Academic Press, New York, 1980.Google Scholar
  9. 9.
    Hitczenko, P.: Best constants in martingale version of Rosental's inequality,Ann. Probab. 18 (1990), 1656–1668.Google Scholar
  10. 10.
    Ibragimov, J. A. and Linnik, Yu. V.:Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.Google Scholar
  11. 11.
    Rackauskas, A.: On probabilities of large deviations for martingales,Liet. Matem. Rink. 30 (1990), 784–795.Google Scholar
  12. 12.
    Saulis, L. and Statulevičius, V.:Limit Theorems for Large Deviations, Kluwer Academic Publishers, Dor-drecht, 1991.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. Račkauskas
    • 1
  1. 1.Department of MathematicsVilnius UniversityVilniusLithuania

Personalised recommendations