Journal of Chemical Ecology

, Volume 19, Issue 5, pp 893–906 | Cite as

Allelochemic control of biomass allocation in interacting shrub species

  • Michael C. Rutherford
  • Leslie W. Powrie
Article

Abstract

Aqueous leachates derived from canopy phyllodes of invasiveAcacia cyclops affected growth of a range of shrub species independently of nutrient input effects. All plants showed a sublethal phytotoxic response. Root mass was generally less adversely affected than shoot mass and, while decreasing significantly in response to the 10% concentration, showed no such response to the 1% solution. Root-shoot biomass ratios increased, except inEuphorbia burmannii, which may recognize intrinsic root architecture limitations on extensive exploitation of toxin-free soil. Application of surface plant litter from underA. cyclops canopies stimulated the production of basal stems inProtasparagus capensis andEriocephalus racemosus but was insufficient to significantly reduce root-shoot ratios. Plant growth inhibition was maximized by canopy leachate compounded by surface litter effects inAnthospermum spathulatum. The net effect of leachate at high concentration on biomass allocation in certain shrub species may help explain their patterns of association and disassociation withA. cyclops.

Key Words

Acacia cyclops allelopathy competition inhibition growth leachate nutrients phytotoxicity stimulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achhireddy, N.R., Singh, M., Achhireddy, L.L., Nigg, H.N., andNagy, S. 1985. Isolation and partial characterization of phytotoxic compounds from Lantana (Lantana camara L.).J. Chem. Ecol. 11:979–988.Google Scholar
  2. Buta, J.G. andSpaulding, D.W.. 1989. Allelochemicals in tall fescue—abscisic and phenolic acids.J. Chem. Ecol. 15:1629–1636.Google Scholar
  3. Harborne, J.B. 1988. Introduction to Ecological Biochemistry. Academic Press, London.Google Scholar
  4. Harper, J.L. 1975. Allelopathy (a review).Q. Rev. Biol. 50:493–495.Google Scholar
  5. Hegazy, A.K., Mansour, K.S. andAbdel-Hady, N.F. 1990. Allelopathic and autotoxic effects ofAnastatica hierochuntica L.J. Chem. Ecol. 16:2183–2193.Google Scholar
  6. Heisey, R.M. 1990. Evidence for allelopathy by tree-of-heaven (Ailanthus altissima).J. Chem. Ecol. 16:2039–2055.Google Scholar
  7. Hewitt, E.J. andSmith, T.A. 1975. Plant Mineral Nutrition. English Universities Press Ltd., London.Google Scholar
  8. Keeley, J.E. andKeeley, S.C. 1989. Allelopathy and the fire-induced herb cycle, pp. 65–72,in S.C. Keeley (ed.). The California Chaparral. Paradigms Reexamined. No. 34 Science Series, Natural History Museum of Los Angeles County, Los Angeles.Google Scholar
  9. Kil, B.-S. andYun, K.W.. 1992. Allelopathic effects of water extracts ofArtemisia princeps var.orientalis on selected plant species.J. Chem. Ecol. 18:39–51.Google Scholar
  10. Leather, G.R. andEinhellig, F.A. 1988. Bioassay of naturally occurring allelochemicals for phytotoxicity.J. Chem. Ecol. 14:1821–1828.Google Scholar
  11. Lovett, J.V., Ryuntyu, M.Y. andLiu, D.L. 1989. Allelopathy, chemical communication, and plant defence.J. Chem. Ecol. 15:1193–1202.Google Scholar
  12. Lyu, S.-W. andBlum, U. 1990. Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system.J. Chem. Ecol. 16:2429–2439.Google Scholar
  13. Macdonald, I.A.W., Kruger, F.J. andFerrar, A.A. (eds.) 1986. The Ecology and Management of Biological Invasions in Southern Africa. Oxford University Press, Cape Town.Google Scholar
  14. Martin, V.L., McCoy, E.L. andDick, W.A. 1990. Allelopathy of crop residues influences corn seed germination and early growth.Argon. J. 82:555–560.Google Scholar
  15. May, F.E. andAsh, J.E. 1990. An assessment of the allelopathic potential ofEucalyptus.Aust. J. Bot. 38:245–254.Google Scholar
  16. Molina, A., Reigosa, M.J. andCarballeira, A. 1991. Release of allelochemical agents from litter, throughfall, and topsoil in plantations ofEucalyptus globulus Labill in Spain.J. Chem. Ecol. 17:147–160.Google Scholar
  17. Mooney, H.A., Kummerow, J., Moll, E.J., Orshan, G., Rutherford, M.C. andSommerville, J.E.M. 1983. Plant form and function in relation to nutrient gradients, pp. 55–76,in J.A. Day (ed.). Mineral nutrients in mediterranean ecosystems. South African National Science Programmes Rep. 71. Council for Scientific and Industrial Research, Pretoria.Google Scholar
  18. Qasem, J.R. andHill, T.A. 1989a. On difficulties with allelopathy methodology.Weed Res. 29:345–347.Google Scholar
  19. Qasem, J.R. andHill, T.A. 1989b. Possible rôle of allelopathy in the competition between tomato,Senecio vulgaris L. andChenopodiun album L.Weed Res. 29:349–356.Google Scholar
  20. Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, Orlando, Florida.Google Scholar
  21. Rice, E.L. 1986. Allelopathic growth stimulation, pp. 23–42,in A.R. Putnam and C.-S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.Google Scholar
  22. Richardson, D.R. andWilliamson, G.B. 1988. Allelopathic effects of shrubs of the sand pine scrub on pines and grasses of the sandhills.For. Sci. 34:592–605.Google Scholar
  23. Rutherford, M.C. andBösenberg, J. de W. 1988. Some responses of indigenous western Cape vegetation to the Australian invasive,Acacia cyclops, pp. 631–636,in F. di Castri, Ch. Floret, S. Rambal, and J. Roy (eds.). Time Scales and Water Stress. International Union of Biological Sciences, Paris.Google Scholar
  24. Saville, D.J. 1990. Multiple comparison procedures: The practical solution.Am. Stat. 44:174–180.Google Scholar
  25. Singh, M., Tamma, R.V. andNigg, H.N. 1989. HPLC identification of allelopathic compounds fromLantana camara.J. Chem. Ecol. 15:81–89.Google Scholar
  26. Tang, C.-S. 1986. Continuous trapping techniques for the study of allelochemicals from higher plants, pp. 113–131,in A.R. Putnam and C.-S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.Google Scholar
  27. Tukey, H.B., Jr. 1970. The leaching of substances from plants.Annu. Rev. Plant Physiol. 21:305–324.Google Scholar
  28. Whitfield, F.B., Shea, S.R., Gillen, K.J. andShaw, K.J. 1981. Volatile components from the roots ofAcacia pulchella R.Br. and their effect onPhytophthora cinnamomi Rands.Aust. J. Bot. 29:195–208.Google Scholar
  29. Williamson, G.B. 1990. Allelopathy, Koch's postulates, and the neck riddle, pp. 143–162,in J.B. Grace and D. Tilman (eds.). Perspectives on Plant Competition. Academic Press, San Diego.Google Scholar
  30. Williamson, G.B., Fischer, N.H., Richardson, D.R. andDe La Pena, A. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub,Conradina canescens.J. Chem. Ecol. 15:1567–1577.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Michael C. Rutherford
    • 1
  • Leslie W. Powrie
    • 1
  1. 1.Stress Ecology Research Programme National Botanical Institutec/o University of Cape TownRondeboschSouth Africa

Personalised recommendations