Skip to main content
Log in

GM2 ganglioside and pyramidal neuron dendritogenesis

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GM2 ganglioside, although scarce in normal adult brain, is the predominant ganglioside accumulating in several types of lysosomal disorders, most notably Tay-Sachs disease. Pyramidal neurons of cerebral cortex in Tay-Sachs, as well as many other types of neuronal storage disorders, are known to exhibit a phenomenon believed unique to storage disorders: growth of ectopic dendrites. Recent studies have shown that a common metabolic abnormality shared by storage diseases with ectopic dendrite growth is the abnormal accumulation of GM2 ganglioside. The correlation between increased levels of GM2 and the presence of ectopic dendrites has been found in both ganglioside and nonganglioside storage disorders, the latter including sphingomyelin-cholesterol lipidosis, mucopolysaccharidosis, and α-mannosidosis. Quantitative HPTLC analysis has shown that increases in GM2 occur in proportion to the incidence of ectopic dendrite growth, whereas, other gangliosides, including GM1, lack similar increases. Immunocytochemical studies of all nonganglioside storage diseases which exhibit ectopic dendritogenesis have revealed heightened GM2 ganglioside-immunoreactivity in the cortical pyramidal cell population, whereas neurons in normal adult brain exhibit little or no staining for this ganglioside. Further, studies examining disease development have consistently shown that accumulation of GM2 gangliosideprecedes growth of ectopic dendrites, indicating that it is not simply occurring secondary to new membrane production. These findings have prompted an examination for a similar relationship between GM2 ganglioside and dendritogenesis in cortical neurons of normal developing brain. Results show that GM2 ganglioside-immunoreactivity is consistently elevated in immature neurons during the period when they are undergoing active dendritic initiation, but this staining diminishes dramatically as the dendritic tress of these cells mature. Collectively, these studies on diseased and normal brain offer compelling evidence that GM2 ganglioside plays a pivotal role in the regulation of dendritogenesis in cortical pyramidal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klenk, E., 1935. Über die Natur der phosphatide und anderer Lipoide des Gehirns und der Leber bei der Niemann-Picksche Krankeit (12, Mitteilung uber phosphatide), Hoppe-Seyler's Z. Physiol. Chem. 235:24.

    Google Scholar 

  2. Klenk, E. 1939. Beiträge zur Chemie der ipoidosen (3. Mitteilung) Neimann-Picksche Krankheit und amaurotische Idiotie, Hoppe-Seyler's Z. Physiol. Chem. 262:128.

    Google Scholar 

  3. Klenk, E. 1942. Über die Ganglioside, eine neue Gruppe von zukerhältigen Gehirnlipoiden, Hoppe-Seyler's Z. Physiol. Chem 273:76–86.

    Google Scholar 

  4. Svennerholm, L. 1956. Composition of gangliosides from human brain. Nature 177:524–525.

    Google Scholar 

  5. Ledeen, R. W., and Salsman, K. 1965. Structure of Tay-Sachs ganglioside. J. Biochem. 4:2225–2233.

    Google Scholar 

  6. Svennerholm, L. 1963. Chromatographic separation of human brain gangliosides. J. Neurochem. 10:613–623.

    Google Scholar 

  7. Stults, C. L. M., Sweely, C. C., and Macher B. A. 1989. Glycosphingolipds: structure, biological source, and proper ties. Methods Enzymol. 179:167–214.

    Google Scholar 

  8. Purpura D. P., and Suzuki K. 1976. Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease. Brain Res 116:1–21.

    Google Scholar 

  9. Sandhoff, K., and Echten, G. 1994. Ganglioside metabolism: Enzymology, topology, and regulation. Prog. Brain Res. 101:17–30.

    Google Scholar 

  10. Yu, R. K. 1994. Developmental regulation of ganglioside metabolism. Prog. Brain Res. 101:31–44.

    Google Scholar 

  11. Zeller, C. B., and Marchase, R. B. 1992. Gangliosides as modulators of cell function. Amer. J. Physiol. 262:C1341-C1355.

    Google Scholar 

  12. Young, W. W., Lutz, M. S., Mills, S. E., and Lechler-Osborn, S. 1990. Use of brefeldin A to define sites of glycosphingolipid synthesis: GA2/GM2/GD2 synthase is trans to the brefeldin A block. Proc. Natl. Acad. Sci. USA 87:6838–6842.

    Google Scholar 

  13. Van Echten, G., and Sandhoff, K. 1989. Modulation of ganglioside biosynthesis in primary cultured neurons. J. Neurochem. 52:207–214.

    Google Scholar 

  14. Ruan, S., and Lloyd, K. O. 1992. Glycosylation pathways in the biosynthesis of gangliosides in melanoma and neuroblastoma cells: Relative glycosyltransferase levels determine ganglioside patterns. Cancer Res. 52:5725–5731.

    Google Scholar 

  15. Yamashiro, S., Ruan, S., Furukawa, K., Tai, T., Lloyd, K. O., Shiku, H., and Furukawa, K. 1993. Genetic and enzymatic basis for the differential expression of GM2 and GD2 gangliosides in the human cancer cell lines. Cancer Res. 53:5395–5400.

    Google Scholar 

  16. Nagata, Y., Yamashiro, S., Yodoi, J., Lloyd, K. O., Shiku, H., and Furukawa, K. 1992. Expression cloning of β1,4Nacetylgalactosaminyltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides. J. Biol. Chem. 267:12082–12089.

    Google Scholar 

  17. Gu, X.-B., Gu, T.-J., and Yu, R. K. 1990. Purification to homogeneity of GD3 synthase and partial purification of GM3 synthase from rat brain. Biochem. Biophys. Res. Commun. 166:387–393.

    Google Scholar 

  18. Melkerson-Watson, L. J., and Sweely, C. C. 1991. Purification to apparent homogeneity by immunoaffinity chromatography and partial characterization of the GM3 ganglioside forming enzyme, CMP-sialic acid: lactosylceramide α 2,3-sialyltransferase (SAT-1) from rat liver Golgi. J. Biol. Chem. 266:4448–4457.

    Google Scholar 

  19. Caputto, R. 1992. Endogenous inhibition of glycosyltransferases of gangliosides: possible biochemical and morphogenetic functions. Biochem. Society Transactions 20:705–710.

    Google Scholar 

  20. Quiroga, S., Panzetta, P., and Caputto, R. 1990. An endogenous inhibitor of N-acetylgalactosaminyltransferase inhibits retina neuron differentiation in culture. Brain Res. 508:337–340.

    Google Scholar 

  21. Yusuf, H. K. M., Schwarzmann, G., Pohlentz, G., and Sandhoff, K. 1986. Oligosialogangliosides inhibit GM2- and GD3-synthesis in isolated Golgi vesicles from rat liver. Reg. of Ganglioside Biosynthesis 368:455–462.

    Google Scholar 

  22. van Meer, G. 1989. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5:247–75.

    Google Scholar 

  23. Tettamanti, G., and Riboni, L. 1993. Gangliosides and modulation of the function of neural cells. Adv. Lipid Res. 25:235–267.

    Google Scholar 

  24. Young, W. W., Lutz, M. S., and Blackburn, W. A. 1992. Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates. J. Biol. Chem. 267:12011–12015.

    Google Scholar 

  25. Miller-Podraza, H., and Fishman, P. H. 1982. Translocation of newly synthesized gangliosides to the cell surface. Biochemistry 21:3265–3270.

    Google Scholar 

  26. Ghidoni, R., Riboni, L., and Tettamanti, G. 1989. Metabolism of exogenous gangliosides in cerebellar granule cells, differentiated in culture. J. Neurochemistry. 53:1567–1574.

    Google Scholar 

  27. Hoffmann, P. M., and Pagano, R. E. 1993. Retrograde movement of membrane lipids from the Golgi apparatus to the endoplasmic reticulum of perforated cells: evidence for lipid recycling. Europ. J. Cell Biol. 60:371–375.

    Google Scholar 

  28. Matyas, G. R., and Morre, D. J. 1987. Subcellular distribution and biosynthesis of rat liver gangliosides. Biochim. Biophys. Acta 921:599–614.

    Google Scholar 

  29. Kozireski, D. F., Wu, G., Lu, Z., and Ledeen, R. W. 1995. Developmental change of nuclear GM1 in neuronal primary cultures. J. Neurochem. 64, Suppl.: S89.

    Google Scholar 

  30. Rosenberg, A., Sauer, A., Noble, E. P., Gross, H. J., Chang, R., and Brossmer, R. 1992. Developmental patterns of ganglioside sialosylation coincident with neuritogenesis in cultured embryonic chick brain neurons. J. Biol. Chem. 267:10607–10612.

    Google Scholar 

  31. Thomas, P. D., and Brewer, G. J. 1990. Gangliosides and synaptic transmission. Biochim. Biophys. Acta 1031:277–289.

    Google Scholar 

  32. Saito, M., and Yu, R. K. 1993. Possible role of myelin-associated neuraminidase in membrane adhesion. J. Neuroscience Res. 36:127–132.

    Google Scholar 

  33. Li, R., and Ladisch, S. 1991. Shedding of human neuroblastoma gangliosides. Biochem. Biophys. Acta 1083:57–64.

    Google Scholar 

  34. Ladisch, S., Li, R., and Olson, E. 1994. Ceramide structure predicts tumor ganglioside immunosuppressive activity. Proc. Natl. Acad. Sci. USA 91:1974–1979.

    Google Scholar 

  35. Hiraiwa, M., Soeda, S., Kishimoto, Y., and O'Brien, J. S. 1992. Binding and transport of gangliosides by prosaposin. Proc. Natl. Acad. Sci. USA 89:11254–11258.

    Google Scholar 

  36. Zdebska, E., Antoniewicz, J., Nilsson, B., Sandhoff, K., Furst, W., Janik, P., and Koscielak, J. 1992. Gauglioside binding proteins of calf brain with ubiquitin-like N-terminals. Eur. J. Biochem. 210:483–489.

    Google Scholar 

  37. Gravel, R. A., Clarke, J. T. R., Kaback, M. M., Mahuran, D., Sandhoff, K., and Suzuki, K. 1994. The GM2 gangliosidoses Pages 2839–2879,in Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds), The Metabolic Basis of Inherited Disease. 7th edition, New York: McGraw-Hill.

    Google Scholar 

  38. Sachs, B. 1887. On arrested cerebral development, with special reference to its cortical pathology. J. Nerv. Ment. Dis. 14:541–553.

    Google Scholar 

  39. Myerowitz, R., and Costigan, F. C. 1988. The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the a-chain of b-hexosaminidase. J. Biol. Chem. 263: 18587–18589.

    Google Scholar 

  40. Leinekugel, P., Michel, S., Conzelmann, E., and Sandhoff, K. 1992. Quantitative correlation between the resudual activity of β-hexosaminidase A and arylsulfatase A and severity of the resulting lysosomal storage disease. Hum. Genet. 88:513–523.

    Google Scholar 

  41. Walkley, S. U. 1988. Pathobiology of neuronal storage disease. Internat. Rev. Neurobiol. 29:191–244.

    Google Scholar 

  42. Walkley, S. U., 1987. Further studies on ectopic dendrite growth and other geometrical distortions of neurons in feline GM1 gangliosidosis. Neuroscience 21:313–331.

    Google Scholar 

  43. Walkley, S.U., and Baker, H. J. 1984. Sphingomyelin lipidosis in a cat. II. Golgi studies. Acta Neuropathologica (Berl.) 65:138–144.

    Google Scholar 

  44. Walkley, S. U., Haskins, M. E., and Shull, R. M. 1988. Alterations in neuron morphology in mucopolysaccharide storage disorders. Acta Neuropathol. (Berl.) 75:611–620.

    Google Scholar 

  45. Walkley, S. U., Blakemore, W. F., and Purpura, D. P. 1981. Alterations in neuron morphology in feline mannosidosis: A Golgi study. Acta Neuropathol. (Berl.) 53:75–79.

    Google Scholar 

  46. Walkley, S. U., Siegel, D. A., and Wurzelmann S. 1988. Ectopic dendritogenesis and associated synapse formation in swainsonine-induced neuronal storage disease. J. Neuroscience 8:445–457.

    Google Scholar 

  47. Walkley, S. U., and Wurzelmann S. 1995. Alterations in synaptic connectivity in cerebral cortex in neuronal storage disorders. Mental Retardation and Developmental Disabilities Research Reviews 1 (3) (In press).

  48. Siegel, D. A., and Walkley, S. U. 1994. Growth of ectopic dendrites on cortical pyramidal neurons in neuronal storage diseases correlates with abnormal accumulation of GM2 ganglioside. J. Neurochem. 62:1852–1862.

    Google Scholar 

  49. Goodman, L. A., Livingston, P. O., and Walkley, S. U. 1991. Proliferation of ectopic dendrites on cortical pyramidal neurons is associated with accumulated GM2 ganglioside in a nonganglioside storage disease. Proc. Natl. Acad. Sci. USA 88:11330–11334.

    Google Scholar 

  50. Walkley, S. U. 1995. Pyramidal neurons with ectopic dendrites in storage diseases contain elevated levels of GM2 ganglioside. Neuroscience 68:1027–1035.

    Google Scholar 

  51. Walkley, S. U., Wurzelmann, S., Rattazzi, M. C., and Baker, H. J. 1990. Distribution of ectopic neurite growth and other geometrical distortions of neurons in feline GM2 gangliosidosis. Brain Res. 510:63–73.

    Google Scholar 

  52. Walkley, S. U., Baker, H. J., and Rattazzi, M. C. 1990. Initiation and growth of ectopic neurites and meganeurites during postnatal brain development in ganglioside storage disease. Devel. Brain Res. 51:167–178.

    Google Scholar 

  53. Skaper, S. D., and Varon, S. 1985. Ganglioside GM1 overcomes serum inhibition of neuritic outgrowth. Int. J. Devel. Neurosc. 3:187–198.

    Google Scholar 

  54. Ledeen, R. W., and Wu, G. 1992. Ganglioside function in the neuron. Trends Glycosci. Glycotech. 4:174–187.

    Google Scholar 

  55. Dobrenis, K., and Walkley, S. U. 1992. Expression of GM2 ganglioside by neurons elaborating neurites in fetal rat cerebral cortex cultures. Soc. Neurosci. Abst. 18(1):606.

    Google Scholar 

  56. Dahms, N. M., and Schnaar, R. L., 1983. Ganglioside composition is regulated during differentiation in the neuroblastoma X glioma hybrid cell line NG108-15. J. Neuroscience. 3:806–817.

    Google Scholar 

  57. Walton, K. M., and Schnaar, R. L. 1989. Coordinate regulation of ganglioside glycosyltransferases in differentiating NG108-15 neuroblastoma X glioma cells. J. Neurochem. 52:1537–1544.

    Google Scholar 

  58. Wu, G., Nakamura, K., and Ledeen, R. W. 1994. Inhibition of neurite outgrowth of neuroblastoma Neuro-2A cells by cholera toxin B-subunit and anti-GM1 antibody. Molec. Chem. Neuropathol. 21:259–271.

    Google Scholar 

  59. Byrne, M. C., Ledeen, R. W., Roisen, F. J., Yorke, G., and Sclafani, J. R. 1983. Ganglioside-induced neuritogenesis: verification that gangliosides are the active agents, and comparison of molecular species. J. Neurochem. 41:1214–1222.

    Google Scholar 

  60. Riboni, L., Prinetti, A., Pitto, M., and Tettamanti, G. 1990. Patterns of endogenous gangliosides and metabolic processing of exogenous gangliosides in cerebellar granule cells during differentiation in culture. Neurochem. Res. 15:1175–1183.

    Google Scholar 

  61. Nagai, Y., and Tsuji, S., 1989. Bioactive ganglioside mediated carbohydrate recognition in coupling with ecto-protein phosphorylation. Pages 119–134,in Carbohydrate recognition in cellular function. Ciba Fdn. Symp. Vol 145, John Wiley and Sons, Chicester, UK.

    Google Scholar 

  62. Tsuji, S., Yamashita, T., Matsuda, Y., and Nagai, Y. 1992. A novel glycosignaling system: GQ1b-dependent neuritogenesis of human neuroblastoma cell line, GOTO, is closely associated with GQ1b-dependent ecto-type protein phosphorylation. Neurochem. Intern. 21:549–554.

    Google Scholar 

  63. Barletta, E., and Culp, L. A. 1990. Clonal segregation of multiple and overlapping matrix adhesive responses in dorsal root neuronal derivative cells. J. Cellular Physiol. 143:263–278.65

    Google Scholar 

  64. Ferreira, A., Busciglio, J., Landa, C., and Caceres, A. 1990. Ganglioside-enhanced neurite growth: evidence for a selective induction of high-molecular-weight MAP-2. J. Neuroscience 10:293–302.

    Google Scholar 

  65. Skaper, S. D., Leon, A., and Toffano, G. 1989. Ganglioside function in the development and repair of the nervous system. Mole. Neurobiol. 3:173–199.

    Google Scholar 

  66. Walsh, F. S., Skaper, D., and Doherty, P. 1994. Cell Adhesion molecule (NCAM and N-cadherin)-dependent neurite outgrowth in modulated by gangliosides. Prog. Brain Res. 101:113–116.

    Google Scholar 

  67. Nagai, Y., and Tsuji, S. 1994. Significance of ganglioside-mediated glycosignal transduction in neuronal differentiation and development. Prog. Brain Res. 101:119–125.

    Google Scholar 

  68. Wu, G., and Ledeen, R. W. 1994. Gangliosides as modulators of neuronal calcium. Progr. Brain Res. 101:101–112.

    Google Scholar 

  69. Suzuki, K. 1965. The pattern of mammalian brain gangliosides III. Regional and developmental differences. J. Neurochem. 12: 969–979.

    Google Scholar 

  70. Spence, M. W., and Wolfe, L. S. 1967. Gangliosides in developing rat brain. Isolation and composition of subcellular membranes enriched in gangliosides. Can. J. Biochem. 45:671–688.

    Google Scholar 

  71. Tettamanti, G. 1971. Brain gangliosides in development. Adv. Exper. Med. Biol. 13:75–89.

    Google Scholar 

  72. Vanier, M., Holm, M., and Ohman, R., and Svennerholm, L. 1971. Developmental profiles of gangliosides in human and rat brain. J. Neurochem. 18:581–592.

    Google Scholar 

  73. Schengrund, C.-A. 1990. The role(s) of gangliosides in neuronal differentiation and repair: A perspective. Brain Research Bulletin, 24, 131–141.

    Google Scholar 

  74. Yates, A. J. 1986. Gangliosides in the nervous system during development and regeneration. Neurochem. Pathol. 5:309–329.

    Google Scholar 

  75. Suzuki, K. 1970. Formation and turnover of myelin ganglioside. J. Neurochem. 17:209–213.

    Google Scholar 

  76. Goldman, J. E., and Vaysse, P. J.-J. 1991. Tracing glial lineages in the mammalian forebrain. Glia 4:149–156.

    Google Scholar 

  77. Goldman, J. E., Hirano, M., Yu, R. K., and Seyfied, T. N. 1984. GD3 ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J. Neurochem. 7:179–192.

    Google Scholar 

  78. Sbaschnig-Agler, M., Dreyfus, H., Norton, W. T., Sensenbrenner, M., Farooq, M., Byrne, M., and R. W. Ledeen. 1988. Gangliosides of cultured astroglia. Brain Res. 461:98–106.

    Google Scholar 

  79. Wolswijk, G. 1995. Strongly GD3+ cells in the developing and adult rat cerebellum belong to the microglial lineage rather than to the oligodendrocyte lineage. Glia 13:13–26.

    Google Scholar 

  80. Yu, R. K., Macala, L. J., Taki, T., Weinfield, H. M., and Yu, F. S. 1988. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 50:1825–1829.

    Google Scholar 

  81. Irie, R. F., Irie, K., and Morton, D. L. 1976. A membrane antigen common to human cancer and fetal brain tissues. Cancer Res. 36:3510–3517.

    Google Scholar 

  82. Tai, T., Paulson, J. C., Cahan, L. D., and Irie, R. F. 1983. Ganglioside GM2 as a human tumor antigen (OFA-I-1). Proc. Natl. Acad. Sci. (USA) 80:5392–5396.

    Google Scholar 

  83. Purpura, D. P. 1975. Morphogenesis of visual cortex in the preterm infant. Pages 33–49in M. Brazier (ed), Growth and Development of the Brain, Raven Press, NY.

    Google Scholar 

  84. Purpura, D. P., and Walkley, S. U. 1981. Aberrant neurite and spine generation in mature neurons in the gangliosidoses. Pages 1–16in M. Rapport and A. Gorio (eds), Gangliosides in Neurological and Neuromuscular Function, Development and Repair. Raven Press, NY.

    Google Scholar 

  85. Goodman, L. A. and Walkley, S. U. 1994. Elevated GM2 ganglioside is associated with new dendrite growth in neuronal storage diseases and developing neocortex. Brain Pathology 4:376.

    Google Scholar 

  86. Buell, S., and Coleman, P. 1979. Dendritic growth in the aged human brain and failure of growth in senile dementia, Science 206:854–856.

    Google Scholar 

  87. Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen. 1987. Anatomical organization of excitatory amino acid receptors and their pathways. TINS 10:273–280.

    Google Scholar 

  88. Purves, D., and Hadley, R. D. 1985. Changes in the dendritic branching of adult mammalian neurons revealed by repeated imaging in situ. Nature 315:404–406.

    Google Scholar 

  89. De Voogd, T. J. 1987. Androgens can affect the morphology of mammalian CNS neurons in adulthood. TINS 10:341–342.

    Google Scholar 

  90. Sounderfeld, S., Conzelmann, E., Schwarzmann, G., Carroll, M., and Sandhoff, K. (1985) Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. Eur J Biochem 149:247–255.

    Google Scholar 

  91. Wood, P. A., McBride, M. R., Baker, H. J., and Christian, S. T. 1985. Fluorescence polarization analysis, lipid composition, and Na+, K+-ATPase kinetics of synaptosomal membranes in feline GM1 and GM2 gangliosidosis. J Neurochem 44:947–956.

    Google Scholar 

  92. Dawson, G., and Berry-Kravis, E. 1984. Gangliosides as modulators of the coupling of neurotransmitters to adenyl cyclase. Pages 341–353,in Ledeen, R. W., Yu, R. K., Rapport, M. M. and Suzuki, K. (eds), Advances in Experimental Medicine and Biology Vol. 174, Plenum Press, New York.

    Google Scholar 

  93. Lacetti, P., Tombaccini, D., Aloj, S., Grollman, E. F., and Kohn, L. D. 1984. Gangliosides, the thyrotropin receptor, and autoimmune thyroid disease. Pages 355–367,in Ledeen, R. W., Yu, R. K., Rapport, M. M., and Suzuki, K. (eds), Advances in Experimental Medicine and Biology Vol.174, Plenum Press, New York.

    Google Scholar 

  94. Bremer, E. G., and Hakomori, S.-I. 1984. Gangliosides as receptor modulators. Pages 381–394,in Ledeen, R. W., Yu, R. K., Rapport, M. M., and Suzuki, K. (eds), Advances in Experimental Medicine and Biology 174, Plenum Press, New York.

    Google Scholar 

  95. Bremer, E. G., Hakomori, S.-I., Bowen-Pope, D. F., Raines, E., and Ross, R. 1984. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J. Biol. Chem. 259:6818–6825.

    Google Scholar 

  96. Hanai, N., Nores, G., Torres-Mendez, C.-R., and Hakomori, S. 1987. Modified ganglioside as a possible modulator of transmembrane signaling mechanism through growth factor receptors: a preliminary note. Biochem. Biophys. Res. Commun. 147:127–134.

    Google Scholar 

  97. Hanai, N., Dohi, T., Nores, G. A., and Hakomori, S. 1988. A novel ganglioside, de-N-acetyl-GM3 (II3 NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J. Biol. Chem. 263:6296–6301.

    Google Scholar 

  98. Rahmann, H., Rösner, H., Körtje, K.-H., Beitinger, H., and Seybold, V. 1994. Ca2+-ganglioside-interaction in neuronal differentiation and development. Prog. Brain Res. 101:127–145.

    Google Scholar 

  99. Goldenring, J. R., Otis, L. J., Yu, R. K., and DeLorenzo, R. J. 1985. Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J. Neurochem. 44:1229–1243.

    Google Scholar 

  100. Tsuji, E. G., Nakajima, J., Sasaki, T., and Nagai, Y. 1985. Bioactive gangliosides IV. Ganglioside GQ1b/Ca++ dependent protein kinase activity exists in the plasma membrane fraction of neuroblastoma cell line, GOTO. J. Biochem. 97:969–972.

    Google Scholar 

  101. Claro, E., Wallace, M. A., Fain, J. N., Nair, B. G., Patel, T. B., Shanker, G., and Baker, H. J. 1991. Altered phosphoinositidespecific phospholipase C and adenylyl cyclase in brain control membranes of cats with GM1 and GM2 gangliosidosis. Molec. Brain Res. 11:265–271.

    Google Scholar 

  102. Roseman, S. 1970. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem. Phys. Lipids. 5:270–279.

    Google Scholar 

  103. Roth, S. 1973. A molecular model for cell interactions. Quart. Rev. Biol. 48:541–563.

    Google Scholar 

  104. Pierce, M., Marchase, R. B., and Roth, S. 1978. The potential roles for ganglioside GM2 and GM1 synthetase in retinotectal specificity. Soc. Exper. Biol. Symp. 32:261–274.

    Google Scholar 

  105. Barbera, A. J., Marchase, R. B., and Roth, S. 1973. Adhesion recognition and retinotectal specificity. Proc. Natl. Acad. Sci. USA 70:2482–2486.

    Google Scholar 

  106. Marchase, R. B., Vosbeck, K., and Roth, S. 1976. Intercellular adhesive specificity. Biochim. Biophys. Acta 457:385–416.

    Google Scholar 

  107. Siegel, D. A., Budde-Steffer, C., and Suzuki, K. 1987. Characterization and purification of an endogenous rat brain protein that binds to GM1 ganglioside. J. Neurochem. 48 (suppl):S040A.

    Google Scholar 

  108. Siegel, D. A. and Suzuki, K. 1994. A GM1-ganglioside-binding protein in rat brain. Prog. Brain Res. 101:149–162.

    Google Scholar 

  109. Boltz-Nitulescu, G., Ortel, B., Riedl, M., and Foster, O. 1984. Ganglioside receptors of rat macrophages. Modulation by enzyme treatment and evidence for its protein nature. Immunology 51:177–184.

    Google Scholar 

  110. Schnaar, R. L., Mahoney, J. A., Swank-Hill, P., Tiemeyer, M., and Needham, L. K. 1994. Receptors for gangliosides and related glycosphingolipids on central and peripheral nervous system membranes. Prog. Brain Res. 101:185–197.

    Google Scholar 

  111. Spiegel, S., Schlessinger, J., and Fishman, P. H. 1984. Incorporation of fluorescent gangliosides into human fibroblasts: mobility, fate and interaction with fibronectin. J. Cell Biol. 99:699–704.

    Google Scholar 

  112. Spiegel, S., Yamada, K. M., Hom, B. E., Moss, J., and Fishman, P. H. 1985. Fluorescent gangliosides as probes for the retention and organization of fibronectin by ganglioside-deficient mouse cells. J. Cell Biol. 100:721–726.

    Google Scholar 

  113. Thompson, L. K., Horowitz, P. M., Bentley, K. L., Thomas, D. A., Aldertee, J. F., and Klebe, R. J. 1986. Localization of ganglioside-binding site of fibronectin. J. Biol. Chem. 261:5209–5214.

    Google Scholar 

  114. Cheresh, D. A., Pytela, R., Pierschbacher, M. D., Klier, F. G., Ruoslahti, E., and Reisfeld, R. A. 1987. An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exists in the divalent cation-dependant functional complex with the disialogangliside GD2. J. Cell Biol. 105:1163–1173.

    Google Scholar 

  115. Barletta, E., Mugnami, G., and Ruggieri, S. 1993. Complex gangliosides modulate the integrin-mediated adhesion in a rat hepatoma cell line. Biochem. Biophys. Res. Comun. 192:214–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Leon S. Wolfe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walkley, S.U., Siegel, D.A. & Dobrenis, K. GM2 ganglioside and pyramidal neuron dendritogenesis. Neurochem Res 20, 1287–1299 (1995). https://doi.org/10.1007/BF00992503

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00992503

Key Words

Navigation