Advertisement

Molecular Biology Reports

, Volume 21, Issue 1, pp 71–73 | Cite as

Proteolytic activity of proteasome on myofibrillar structures

  • Richard G. Taylor
  • Caroline Tassy
  • Mariele Briand
  • Nathalie Robert
  • Yves Briand
  • Ahmed Ouali
Special Issue: Proteasomes And Related Complexes

Abstract

The physiologic function of proteasome remains unclear. Evidence suggests a role in degradation of ubiquitin-protein conjugates, MHC antigen presentation, and some specificity of substrate within certain cell types. To explore further the properties of proteasome we have examined its effect on a well defined structure, the myofibril. We find that despite its large size (20S) proteasome is able to degrade myofibrils and intact, permeabilized muscle fibrils. The proteins degraded showed some specificity because actin, myosin and desmin were degraded faster than α-actinin, troponin T and tropomyosin. Changes in ultrastructure were slow and included a general loss of structure with Z and I bands effected before the M band and costameres.

Key words

muscle fiber myofibril proteasome proteolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peters J-M (1994) Trends Biochem. Sci. 19: 377–382Google Scholar
  2. 2.
    Rechsteiner M, Hoffman L & Dubiel W (1993) J. Biol. Chem. 268: 6065–6068Google Scholar
  3. 3.
    Rivett AJ (1993) Biochem. J. 291: 1–10Google Scholar
  4. 4.
    Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D & Goldberg AL (1994) Cell 78: 761–771Google Scholar
  5. 5.
    Fujiwara T, Tanaka K, Orino E, Yoshimura T, Tamura T, Chung CH, Nakai T, Yamaguchi K, Shin S, Kakizuka A, Nakanishi S & Ichihara A (1990) J. Biol. Chem. 265: 16604–16613Google Scholar
  6. 6.
    Medina R, Wing SS, Haas A & Goldberg AL (1991) Biomed. Biochem. Acta 50: 347–356Google Scholar
  7. 7.
    Orlowski M, Cardozo C & Michaud C (1993) Biochemistry 32: 1563–1572Google Scholar
  8. 8.
    Peters J-M, Franke WW & Kleinschmidt JA (1994) J. Biol. Chem. 269: 7709–7718Google Scholar
  9. 9.
    Tomek W, Buri J, Vallon R & Schmid HP (1990) J. Chromatog. 51: 221–229Google Scholar
  10. 10.
    Taylor RG, Geesink GH & Goll DE (1995) J. Anim. Sci. (in press)Google Scholar
  11. 11.
    Ouali A (1992) Biochemie 74: 251–265Google Scholar
  12. 12.
    Matsuishi M, Matsumoto T, Okitani A & Kato H (1992) Int. J. Biochem. 24: 1967–1978Google Scholar
  13. 13.
    Mikami M, Whiting AH, Taylor MAJ, Maciewicz RA & Etherington DJ (1987) Meat Sci. 21: 81–97Google Scholar
  14. 14.
    Dahlmann B, Kuehn L & Reinauer H (1983) FEBS-Lett. 160: 243–247Google Scholar
  15. 15.
    Mykles DL & Haire MF (1991) Arch. Biochem. Biophys. 288: 543–551Google Scholar
  16. 16.
    Koohmaraie M (1992) Biochimie 74: 239–245Google Scholar
  17. 17.
    Taylor RG, Ouali A & Goll DE (1994) In: Ouali A, Smulders F & Demeyer D (ed.) Proceedings of the Workshop on Expression, Regulation and Role of Proteinases in Muscle Development and Meat Quality. Audet Tijdschriften bv, Nijmegen, The Netherlands (in press)Google Scholar
  18. 18.
    Davey CL & Dickson MA (1970) J. Food Sci. 35: 56–60Google Scholar
  19. 19.
    Koohmaraie M (1992) J. Anim. Sci. 70: 3697–3708Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Richard G. Taylor
    • 1
  • Caroline Tassy
    • 1
  • Mariele Briand
    • 2
  • Nathalie Robert
    • 2
  • Yves Briand
    • 2
  • Ahmed Ouali
    • 1
  1. 1.Station de Recherche sur la ViandeINRAChampanelleFrance
  2. 2.Laboratoire de BiochimieUniversité Blaise PascalAubiere CedexFrance

Personalised recommendations