Advertisement

Molecular Biology Reports

, Volume 21, Issue 1, pp 3–10 | Cite as

Proteasomes of the yeastS. cerevisiae: genes, structure and functions

  • Wolfgang Hilt
  • Dieter H. Wolf
Special Issue: Proteasomes And Related Complexes

Abstract

Proteasomes are large multicatalytic protease complexes which fulfil central functions in major intracellular proteolytic pathways of the eukaryotic cell. 20S proteasomes are 700 kDa cylindrically shaped particles, found in the cytoplasm and the nucleus of all eukaryotes. They are composed of a pool of 14 different subunits (MW 22–25 kDa) arranged in a stack of 4 rings with 7-fold symmetry. In the yeastSaccharomyces cerevisiae a complete set of 14 genes coding for 20S proteasome subunits have been cloned and sequenced. 26S proteasomes are even larger proteinase complexes (about 1700 kDa) which degrade ubiquitinylated proteins in an ATP-dependent fashionin vitro. The 26S proteasome is build up from the 20S proteasome as core particle and two additional 19S complexes at both ends of the 20S cylinder. Recently existence of a 26S proteasome in yeast has been demonstrated. Several 26S proteasome specific genes have been cloned and sequenced. They share similarity with a novel defined family of ATPases. 20S and 26S proteasomes are essential for functioning of the eukaryotic cell. Chromosomal deletion of 20S and 26S proteasomal genes in the yeastS. cerevisiae caused lethality of the cell. Thein vivo functions of proteasomes in major proteolytic pathways have been demonstrated by the use of 20S and 26S proteasomal mutants. Proteasomes are needed for stress dependent and ubiquitin mediated proteolysis. They are involved in the degradation of short-lived and regulatory proteins. Proteasomes are important for cell differentiation and adaptation to environmental changes. Proteasomes have also been shown to function in the control of the cell cycle.

Key words

proteasome ubiquitin yeast S. cerevisiae stress protein degradation cell cycle regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achstetter T, Ehmann C, Osaki A & Wolf DH (1984) J. Biol. Chem. 259: 13344–13348Google Scholar
  2. 2.
    Kleinschmidt JA, Escher C & Wolf DH (1988) FEBS Lett. 239: 35–40Google Scholar
  3. 3.
    Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C & Wolf DH (1991) EMBO J. 10: 555–562Google Scholar
  4. 4.
    Orlowski M, Cardozo C & Michaud C (1993) Biochemistry 32: 1563–1572Google Scholar
  5. 5.
    Heinemeyer W, Gruhler A, Mohrle V, Mahe Y, & Wolf DH (1993) J. Biol. Chem. 268: 5115–5120Google Scholar
  6. 6.
    Enenkel C, Lehmann H, Kipper J, Guckel R, Hilt W & Wolf DH (1994) FEBS Lett. 341: 193–196Google Scholar
  7. 7.
    Hilt W, Enenkel C, Gruhler A, Singer T & Wolf DH (1993) J. Biol. Chem. 268: 3479–3486Google Scholar
  8. 8.
    Friedman H, Goebel M & Snyder M (1992) Gene 122: 203–206Google Scholar
  9. 9.
    Haffter P & Fox TD (1991) Nucleic Acids Res. 19: 5057Google Scholar
  10. 10.
    Lee DH, Tanaka K, Tamura T, Chung CH & Ichihara A (1992) Biochem. Biophys. Res. Commun. 182: 452–460Google Scholar
  11. 11.
    Basile G, Aker M & Mortimer RK (1992) Mol. Cell. Biol. 12: 3235–3246Google Scholar
  12. 12.
    Emori Y, Tsukahara T, Kawasaki H, Ishiura S, Sugita H & Suzuki K (1991) Mol. Cell. Biol. 11: 344–353Google Scholar
  13. 13.
    Fujiwara T, Tanaka K, Orino E, Yoshimura T, Kumatori A, Tamura T, Chung CH, Nakai T, Yamaguchi K, Shin S, Kakizuka A, Nakanishi S & Ichihara A (1990) J. Biol. Chem. 265: 16604–16613Google Scholar
  14. 14.
    Heinemeyer W, Tröndle N, Albrecht G & Wolf DH (1994) Biochemistry 33: 12229–12237Google Scholar
  15. 15.
    Balzi E, Chen WN, Capieaux E, McCusker JH, Haber JE & Goffeau A (1989) Gene 83: 271–279Google Scholar
  16. 16.
    Georgatsou E, Georgakopoulos T & Thieos G (1992) FEBS Lett. 299: 39–43Google Scholar
  17. 17.
    Tanaka K, Yoshimura T, Kumatori A, Ichihara A, Lkai A, Nishigai M, Kameyama K & Takagi T (1988) J. Biol. Chem. 263: 16209–17Google Scholar
  18. 18.
    Tanaka K, Tamura T, Kumatori A, Kwak TH, Chung CH & Ichihara A (1989) Biochem. Biophys. Res. Commun. 164: 1253–61Google Scholar
  19. 19.
    Lee LW, Moomaw CR, Orth K, McGuire MJ, De MG & Slaughter CA (1990) Biochim. Biophys. Acta 1037: 178–185Google Scholar
  20. 20.
    Lilley KS, Davison MD & Rivett AJ (1990) FEBS Lett. 262: 327–329Google Scholar
  21. 21.
    Frentzel S, Kuhn HI, Gernold M, Gott P, Seelig A & Kloetzel PM (1993) Eur. J. Biochem. 216: 119–126Google Scholar
  22. 22.
    Glynne R, Kerr LA, Mockridge I, Beck S, Kelly A & Trowsdale J (1993) Eur. J. Immunol. 23: 860–866Google Scholar
  23. 23.
    Zwickl P, Grziwa A, Puhler G, Dahlmann B, Lottspeich F & Baumeister W (1992) Biochemistry 31: 964–972Google Scholar
  24. 24.
    Dick LR, Moomaw CR, Pramanik BC, De MG & Slaughter CA (1992) Biochemistry 31: 7347–7355Google Scholar
  25. 25.
    Puhler G, Weinkauf S, Bachmann L, Muller S, Engel A, Hegerl R & Baumeister W (1992) EMBO J. 11: 1607–1616Google Scholar
  26. 26.
    Kopp F, Dahlmann B & Hendil KB (1993) J. Mol. Biol. 229: 14–19Google Scholar
  27. 27.
    Schauer TM, Nesper M, Kehl M, Lottspeich F, Mullertauben-berger A, Gerisch G & Baumeister W (1993) J. Struct. Biol. III: 135–147Google Scholar
  28. 28.
    Hough R, Pratt G & Rechsteiner M (1986) J. Biol. Chem. 261: 2400–2408Google Scholar
  29. 29.
    Eytan E, Ganoth D, Armon T & Hershko A: (1989) Proc. Natl. Acad. Sci. USA 86: 7751–7755Google Scholar
  30. 30.
    Driscoll J & Goldberg AL (1990) J. Biol. Chem. 265: 4789–4792Google Scholar
  31. 31.
    Orino E, Tanaka K, Tamura T, Sone S, Ogura T & Ichihara A (1991) FEBS Lett. 284: 206–210Google Scholar
  32. 32.
    Peters JM, Harris JR & Kleinschmidt JA (1991) Eur. J. Cell Biol. 56: 422–32Google Scholar
  33. 33.
    Peters JM, Cejka Z, Harris JR, Kleinschmidt JA & Baumeister W: (1993) J. Mol. Biol. 234: 932–937Google Scholar
  34. 34.
    Richter-Ruoff B, Heinemeyer W & Wolf DH (1992) FEBS Lett. 302: 192–196Google Scholar
  35. 35.
    Seufert W & Jentsch S (1992) EMBO J. 11: 3077–3080Google Scholar
  36. 36.
    Fischer M, Hilt W, Richter-Ruoff B, Gonen H, Ciechanover A & Wolf DH (1994) FEBS Lett. 355: 69–75Google Scholar
  37. 37.
    Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–362Google Scholar
  38. 38.
    Dubiel W, Ferrell K, Pratt G & Rechsteiner M (1992) J. Biol. Chem. 267: 22699–22702Google Scholar
  39. 39.
    Shibuya H, Irie K, Ninomiya TJ, Goebl M, Taniguchi T & Matsumoto K (1992) Nature 357: 700–702Google Scholar
  40. 40.
    Dubiel W, Ferrell K & Rechsteiner M (1993) FEBS Lett. 323: 276–278Google Scholar
  41. 41.
    Dubiel W, Ferrel K & Rechsteiner M (1994) Biol. Chem. Hoppe-Seyler 375: 237–240Google Scholar
  42. 42.
    Ohana B, Moore PA, Ruben SM, Southgate CD, Green MR & Rosen CA (1993) Proc. Natl. Acad. Sci. USA 90: 138–142Google Scholar
  43. 43.
    Swaffield JC, Bromberg JF & Johnston SA (1992) Nature 357: 698–700Google Scholar
  44. 44.
    Gordon C, McGurk G, Dillon P, Rosen C & Hastie ND (1993) Nature 366: 355–357Google Scholar
  45. 45.
    Peters JM, Walsh MJ & Franke WW (1990) EMBO J. 9: 1757–1767Google Scholar
  46. 46.
    Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Frohlich KU & Kunau WH (1991) Cell 64: 499–510Google Scholar
  47. 47.
    Frohlich KU, Fries HW, Rudiger M, Erdmann R, Botstein D & Mecke D (1991) J. Cell. Biol. 114: 443–453Google Scholar
  48. 48.
    Schnall R, Mannhaupt G, Stucka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I & Feldmann H (1994) Yeast 10: 1141–1155Google Scholar
  49. 49.
    Ohba M (1994) FEBS Lett. 351: 263–266Google Scholar
  50. 50.
    Bachmair A, Finley D & Varshavsky A (1986) Science 234: 179–186Google Scholar
  51. 51.
    Varshavsky A (1992) Cell 69: 725–735Google Scholar
  52. 52.
    Dohmen RJ, Madura K, Bartel B & Varshavsky A (1991) Proc. Natl. Acad. Sci. USA 88: 7351–7355Google Scholar
  53. 53.
    Johnson ES, Bartel B, Seufert W & Varshavsky A (1992) EMBO J. 11: 497–505Google Scholar
  54. 54.
    Egner R, Thumm M, Straub M, Simeon A, Schuller HJ & Wolf DH (1993) J. Biol. Chem. 268: 27269–27276Google Scholar
  55. 55.
    Funayama S, Gancedo JM & Gancedo C (1980) Eur. J. Biochem. 109: 61–66Google Scholar
  56. 56.
    Muller D & Holzer H (1981) Biochem. Biophys. Res. Commun. 103: 926–933Google Scholar
  57. 57.
    Schork SM, Bee G, Thumm M & Wolf DH (1994) Nature 369: 283–284Google Scholar
  58. 58.
    Pegg AE (1986) Biochem. J. 234: 249–262Google Scholar
  59. 59.
    Murakami Y, Tanaka K, Matsufuji S, Miyazaki Y & Hayashi S (1992) Biochem. J. 283: 661–664Google Scholar
  60. 60.
    Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K & Ichihara A (1992) Nature 360: 597–599Google Scholar
  61. 61.
    Bercovich Z & Kahana C (1993) Eur. J. Biochem. 213: 205–210Google Scholar
  62. 62.
    Elias S, Bercovich B, Kahana C, Coffino P, Fischer M, Hilt W, Wolf DH & Ciechanover A (1994) Europ. J. Biochem. in pressGoogle Scholar
  63. 63.
    Mamroud-Kidron E, Rosenberghasson Y, Rom E & Kahana C (1994) FEBS Lett. 337: 239–242Google Scholar
  64. 64.
    Nasmyth K & Shore D (1987) Science 237: 1162–1170Google Scholar
  65. 65.
    Herskowitz I (1988) Microbiol. Rev. 52: 536–553Google Scholar
  66. 66.
    Hochstrasser M & Varshavsky A (1990) Cell 61: 697–708Google Scholar
  67. 67.
    Chen P, Jentsch S & Hochstrasser M (1993) Cell 74: 357–369Google Scholar
  68. 68.
    Richter-Ruoff B, Wolf DH & Hochstrasser M (1994) FEBS Lett. 354: 50–52Google Scholar
  69. 69.
    Papa FR & Hochstrasser M (1993) Nature 366: 313–319Google Scholar
  70. 70.
    Nasmyth K (1993) Curr. Opin. Cell. Biol. 5: 166–179Google Scholar
  71. 71.
    Glotzer M, Murray AW & Kirschner MW (1991) Nature 349: 132–138Google Scholar
  72. 72.
    Surana U, Amon A, Dowzer C, McGrew J, Byers B & Nasmyth K (1993) EMBO J. 12: 1969–1978Google Scholar
  73. 73.
    Richter-Ruoff B & Wolf DH (1993) FEBS Lett 336: 34–6Google Scholar
  74. 74.
    Friedman H & Snyder M (1994) Proc. Natl. Acad. Sci. USA 91: 2031–2035Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Wolfgang Hilt
    • 1
  • Dieter H. Wolf
    • 1
  1. 1.Institut für Biochemie der Universität StuttgartStuttgartGermany

Personalised recommendations