Skip to main content
Log in

Proteasomes of the yeastS. cerevisiae: genes, structure and functions

  • Special Issue: Proteasomes And Related Complexes
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Proteasomes are large multicatalytic protease complexes which fulfil central functions in major intracellular proteolytic pathways of the eukaryotic cell. 20S proteasomes are 700 kDa cylindrically shaped particles, found in the cytoplasm and the nucleus of all eukaryotes. They are composed of a pool of 14 different subunits (MW 22–25 kDa) arranged in a stack of 4 rings with 7-fold symmetry. In the yeastSaccharomyces cerevisiae a complete set of 14 genes coding for 20S proteasome subunits have been cloned and sequenced. 26S proteasomes are even larger proteinase complexes (about 1700 kDa) which degrade ubiquitinylated proteins in an ATP-dependent fashionin vitro. The 26S proteasome is build up from the 20S proteasome as core particle and two additional 19S complexes at both ends of the 20S cylinder. Recently existence of a 26S proteasome in yeast has been demonstrated. Several 26S proteasome specific genes have been cloned and sequenced. They share similarity with a novel defined family of ATPases. 20S and 26S proteasomes are essential for functioning of the eukaryotic cell. Chromosomal deletion of 20S and 26S proteasomal genes in the yeastS. cerevisiae caused lethality of the cell. Thein vivo functions of proteasomes in major proteolytic pathways have been demonstrated by the use of 20S and 26S proteasomal mutants. Proteasomes are needed for stress dependent and ubiquitin mediated proteolysis. They are involved in the degradation of short-lived and regulatory proteins. Proteasomes are important for cell differentiation and adaptation to environmental changes. Proteasomes have also been shown to function in the control of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achstetter T, Ehmann C, Osaki A & Wolf DH (1984) J. Biol. Chem. 259: 13344–13348

    Google Scholar 

  2. Kleinschmidt JA, Escher C & Wolf DH (1988) FEBS Lett. 239: 35–40

    Google Scholar 

  3. Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C & Wolf DH (1991) EMBO J. 10: 555–562

    Google Scholar 

  4. Orlowski M, Cardozo C & Michaud C (1993) Biochemistry 32: 1563–1572

    Google Scholar 

  5. Heinemeyer W, Gruhler A, Mohrle V, Mahe Y, & Wolf DH (1993) J. Biol. Chem. 268: 5115–5120

    Google Scholar 

  6. Enenkel C, Lehmann H, Kipper J, Guckel R, Hilt W & Wolf DH (1994) FEBS Lett. 341: 193–196

    Google Scholar 

  7. Hilt W, Enenkel C, Gruhler A, Singer T & Wolf DH (1993) J. Biol. Chem. 268: 3479–3486

    Google Scholar 

  8. Friedman H, Goebel M & Snyder M (1992) Gene 122: 203–206

    Google Scholar 

  9. Haffter P & Fox TD (1991) Nucleic Acids Res. 19: 5057

    Google Scholar 

  10. Lee DH, Tanaka K, Tamura T, Chung CH & Ichihara A (1992) Biochem. Biophys. Res. Commun. 182: 452–460

    Google Scholar 

  11. Basile G, Aker M & Mortimer RK (1992) Mol. Cell. Biol. 12: 3235–3246

    Google Scholar 

  12. Emori Y, Tsukahara T, Kawasaki H, Ishiura S, Sugita H & Suzuki K (1991) Mol. Cell. Biol. 11: 344–353

    Google Scholar 

  13. Fujiwara T, Tanaka K, Orino E, Yoshimura T, Kumatori A, Tamura T, Chung CH, Nakai T, Yamaguchi K, Shin S, Kakizuka A, Nakanishi S & Ichihara A (1990) J. Biol. Chem. 265: 16604–16613

    Google Scholar 

  14. Heinemeyer W, Tröndle N, Albrecht G & Wolf DH (1994) Biochemistry 33: 12229–12237

    Google Scholar 

  15. Balzi E, Chen WN, Capieaux E, McCusker JH, Haber JE & Goffeau A (1989) Gene 83: 271–279

    Google Scholar 

  16. Georgatsou E, Georgakopoulos T & Thieos G (1992) FEBS Lett. 299: 39–43

    Google Scholar 

  17. Tanaka K, Yoshimura T, Kumatori A, Ichihara A, Lkai A, Nishigai M, Kameyama K & Takagi T (1988) J. Biol. Chem. 263: 16209–17

    Google Scholar 

  18. Tanaka K, Tamura T, Kumatori A, Kwak TH, Chung CH & Ichihara A (1989) Biochem. Biophys. Res. Commun. 164: 1253–61

    Google Scholar 

  19. Lee LW, Moomaw CR, Orth K, McGuire MJ, De MG & Slaughter CA (1990) Biochim. Biophys. Acta 1037: 178–185

    Google Scholar 

  20. Lilley KS, Davison MD & Rivett AJ (1990) FEBS Lett. 262: 327–329

    Google Scholar 

  21. Frentzel S, Kuhn HI, Gernold M, Gott P, Seelig A & Kloetzel PM (1993) Eur. J. Biochem. 216: 119–126

    Google Scholar 

  22. Glynne R, Kerr LA, Mockridge I, Beck S, Kelly A & Trowsdale J (1993) Eur. J. Immunol. 23: 860–866

    Google Scholar 

  23. Zwickl P, Grziwa A, Puhler G, Dahlmann B, Lottspeich F & Baumeister W (1992) Biochemistry 31: 964–972

    Google Scholar 

  24. Dick LR, Moomaw CR, Pramanik BC, De MG & Slaughter CA (1992) Biochemistry 31: 7347–7355

    Google Scholar 

  25. Puhler G, Weinkauf S, Bachmann L, Muller S, Engel A, Hegerl R & Baumeister W (1992) EMBO J. 11: 1607–1616

    Google Scholar 

  26. Kopp F, Dahlmann B & Hendil KB (1993) J. Mol. Biol. 229: 14–19

    Google Scholar 

  27. Schauer TM, Nesper M, Kehl M, Lottspeich F, Mullertauben-berger A, Gerisch G & Baumeister W (1993) J. Struct. Biol. III: 135–147

    Google Scholar 

  28. Hough R, Pratt G & Rechsteiner M (1986) J. Biol. Chem. 261: 2400–2408

    Google Scholar 

  29. Eytan E, Ganoth D, Armon T & Hershko A: (1989) Proc. Natl. Acad. Sci. USA 86: 7751–7755

    Google Scholar 

  30. Driscoll J & Goldberg AL (1990) J. Biol. Chem. 265: 4789–4792

    Google Scholar 

  31. Orino E, Tanaka K, Tamura T, Sone S, Ogura T & Ichihara A (1991) FEBS Lett. 284: 206–210

    Google Scholar 

  32. Peters JM, Harris JR & Kleinschmidt JA (1991) Eur. J. Cell Biol. 56: 422–32

    Google Scholar 

  33. Peters JM, Cejka Z, Harris JR, Kleinschmidt JA & Baumeister W: (1993) J. Mol. Biol. 234: 932–937

    Google Scholar 

  34. Richter-Ruoff B, Heinemeyer W & Wolf DH (1992) FEBS Lett. 302: 192–196

    Google Scholar 

  35. Seufert W & Jentsch S (1992) EMBO J. 11: 3077–3080

    Google Scholar 

  36. Fischer M, Hilt W, Richter-Ruoff B, Gonen H, Ciechanover A & Wolf DH (1994) FEBS Lett. 355: 69–75

    Google Scholar 

  37. Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–362

    Google Scholar 

  38. Dubiel W, Ferrell K, Pratt G & Rechsteiner M (1992) J. Biol. Chem. 267: 22699–22702

    Google Scholar 

  39. Shibuya H, Irie K, Ninomiya TJ, Goebl M, Taniguchi T & Matsumoto K (1992) Nature 357: 700–702

    Google Scholar 

  40. Dubiel W, Ferrell K & Rechsteiner M (1993) FEBS Lett. 323: 276–278

    Google Scholar 

  41. Dubiel W, Ferrel K & Rechsteiner M (1994) Biol. Chem. Hoppe-Seyler 375: 237–240

    Google Scholar 

  42. Ohana B, Moore PA, Ruben SM, Southgate CD, Green MR & Rosen CA (1993) Proc. Natl. Acad. Sci. USA 90: 138–142

    Google Scholar 

  43. Swaffield JC, Bromberg JF & Johnston SA (1992) Nature 357: 698–700

    Google Scholar 

  44. Gordon C, McGurk G, Dillon P, Rosen C & Hastie ND (1993) Nature 366: 355–357

    Google Scholar 

  45. Peters JM, Walsh MJ & Franke WW (1990) EMBO J. 9: 1757–1767

    Google Scholar 

  46. Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Frohlich KU & Kunau WH (1991) Cell 64: 499–510

    Google Scholar 

  47. Frohlich KU, Fries HW, Rudiger M, Erdmann R, Botstein D & Mecke D (1991) J. Cell. Biol. 114: 443–453

    Google Scholar 

  48. Schnall R, Mannhaupt G, Stucka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I & Feldmann H (1994) Yeast 10: 1141–1155

    Google Scholar 

  49. Ohba M (1994) FEBS Lett. 351: 263–266

    Google Scholar 

  50. Bachmair A, Finley D & Varshavsky A (1986) Science 234: 179–186

    Google Scholar 

  51. Varshavsky A (1992) Cell 69: 725–735

    Google Scholar 

  52. Dohmen RJ, Madura K, Bartel B & Varshavsky A (1991) Proc. Natl. Acad. Sci. USA 88: 7351–7355

    Google Scholar 

  53. Johnson ES, Bartel B, Seufert W & Varshavsky A (1992) EMBO J. 11: 497–505

    Google Scholar 

  54. Egner R, Thumm M, Straub M, Simeon A, Schuller HJ & Wolf DH (1993) J. Biol. Chem. 268: 27269–27276

    Google Scholar 

  55. Funayama S, Gancedo JM & Gancedo C (1980) Eur. J. Biochem. 109: 61–66

    Google Scholar 

  56. Muller D & Holzer H (1981) Biochem. Biophys. Res. Commun. 103: 926–933

    Google Scholar 

  57. Schork SM, Bee G, Thumm M & Wolf DH (1994) Nature 369: 283–284

    Google Scholar 

  58. Pegg AE (1986) Biochem. J. 234: 249–262

    Google Scholar 

  59. Murakami Y, Tanaka K, Matsufuji S, Miyazaki Y & Hayashi S (1992) Biochem. J. 283: 661–664

    Google Scholar 

  60. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K & Ichihara A (1992) Nature 360: 597–599

    Google Scholar 

  61. Bercovich Z & Kahana C (1993) Eur. J. Biochem. 213: 205–210

    Google Scholar 

  62. Elias S, Bercovich B, Kahana C, Coffino P, Fischer M, Hilt W, Wolf DH & Ciechanover A (1994) Europ. J. Biochem. in press

  63. Mamroud-Kidron E, Rosenberghasson Y, Rom E & Kahana C (1994) FEBS Lett. 337: 239–242

    Google Scholar 

  64. Nasmyth K & Shore D (1987) Science 237: 1162–1170

    Google Scholar 

  65. Herskowitz I (1988) Microbiol. Rev. 52: 536–553

    Google Scholar 

  66. Hochstrasser M & Varshavsky A (1990) Cell 61: 697–708

    Google Scholar 

  67. Chen P, Jentsch S & Hochstrasser M (1993) Cell 74: 357–369

    Google Scholar 

  68. Richter-Ruoff B, Wolf DH & Hochstrasser M (1994) FEBS Lett. 354: 50–52

    Google Scholar 

  69. Papa FR & Hochstrasser M (1993) Nature 366: 313–319

    Google Scholar 

  70. Nasmyth K (1993) Curr. Opin. Cell. Biol. 5: 166–179

    Google Scholar 

  71. Glotzer M, Murray AW & Kirschner MW (1991) Nature 349: 132–138

    Google Scholar 

  72. Surana U, Amon A, Dowzer C, McGrew J, Byers B & Nasmyth K (1993) EMBO J. 12: 1969–1978

    Google Scholar 

  73. Richter-Ruoff B & Wolf DH (1993) FEBS Lett 336: 34–6

    Google Scholar 

  74. Friedman H & Snyder M (1994) Proc. Natl. Acad. Sci. USA 91: 2031–2035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilt, W., Wolf, D.H. Proteasomes of the yeastS. cerevisiae: genes, structure and functions. Mol Biol Rep 21, 3–10 (1995). https://doi.org/10.1007/BF00990964

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00990964

Key words

Navigation