Abstract
Proteasomes are large multicatalytic protease complexes which fulfil central functions in major intracellular proteolytic pathways of the eukaryotic cell. 20S proteasomes are 700 kDa cylindrically shaped particles, found in the cytoplasm and the nucleus of all eukaryotes. They are composed of a pool of 14 different subunits (MW 22–25 kDa) arranged in a stack of 4 rings with 7-fold symmetry. In the yeastSaccharomyces cerevisiae a complete set of 14 genes coding for 20S proteasome subunits have been cloned and sequenced. 26S proteasomes are even larger proteinase complexes (about 1700 kDa) which degrade ubiquitinylated proteins in an ATP-dependent fashionin vitro. The 26S proteasome is build up from the 20S proteasome as core particle and two additional 19S complexes at both ends of the 20S cylinder. Recently existence of a 26S proteasome in yeast has been demonstrated. Several 26S proteasome specific genes have been cloned and sequenced. They share similarity with a novel defined family of ATPases. 20S and 26S proteasomes are essential for functioning of the eukaryotic cell. Chromosomal deletion of 20S and 26S proteasomal genes in the yeastS. cerevisiae caused lethality of the cell. Thein vivo functions of proteasomes in major proteolytic pathways have been demonstrated by the use of 20S and 26S proteasomal mutants. Proteasomes are needed for stress dependent and ubiquitin mediated proteolysis. They are involved in the degradation of short-lived and regulatory proteins. Proteasomes are important for cell differentiation and adaptation to environmental changes. Proteasomes have also been shown to function in the control of the cell cycle.
Similar content being viewed by others
References
Achstetter T, Ehmann C, Osaki A & Wolf DH (1984) J. Biol. Chem. 259: 13344–13348
Kleinschmidt JA, Escher C & Wolf DH (1988) FEBS Lett. 239: 35–40
Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C & Wolf DH (1991) EMBO J. 10: 555–562
Orlowski M, Cardozo C & Michaud C (1993) Biochemistry 32: 1563–1572
Heinemeyer W, Gruhler A, Mohrle V, Mahe Y, & Wolf DH (1993) J. Biol. Chem. 268: 5115–5120
Enenkel C, Lehmann H, Kipper J, Guckel R, Hilt W & Wolf DH (1994) FEBS Lett. 341: 193–196
Hilt W, Enenkel C, Gruhler A, Singer T & Wolf DH (1993) J. Biol. Chem. 268: 3479–3486
Friedman H, Goebel M & Snyder M (1992) Gene 122: 203–206
Haffter P & Fox TD (1991) Nucleic Acids Res. 19: 5057
Lee DH, Tanaka K, Tamura T, Chung CH & Ichihara A (1992) Biochem. Biophys. Res. Commun. 182: 452–460
Basile G, Aker M & Mortimer RK (1992) Mol. Cell. Biol. 12: 3235–3246
Emori Y, Tsukahara T, Kawasaki H, Ishiura S, Sugita H & Suzuki K (1991) Mol. Cell. Biol. 11: 344–353
Fujiwara T, Tanaka K, Orino E, Yoshimura T, Kumatori A, Tamura T, Chung CH, Nakai T, Yamaguchi K, Shin S, Kakizuka A, Nakanishi S & Ichihara A (1990) J. Biol. Chem. 265: 16604–16613
Heinemeyer W, Tröndle N, Albrecht G & Wolf DH (1994) Biochemistry 33: 12229–12237
Balzi E, Chen WN, Capieaux E, McCusker JH, Haber JE & Goffeau A (1989) Gene 83: 271–279
Georgatsou E, Georgakopoulos T & Thieos G (1992) FEBS Lett. 299: 39–43
Tanaka K, Yoshimura T, Kumatori A, Ichihara A, Lkai A, Nishigai M, Kameyama K & Takagi T (1988) J. Biol. Chem. 263: 16209–17
Tanaka K, Tamura T, Kumatori A, Kwak TH, Chung CH & Ichihara A (1989) Biochem. Biophys. Res. Commun. 164: 1253–61
Lee LW, Moomaw CR, Orth K, McGuire MJ, De MG & Slaughter CA (1990) Biochim. Biophys. Acta 1037: 178–185
Lilley KS, Davison MD & Rivett AJ (1990) FEBS Lett. 262: 327–329
Frentzel S, Kuhn HI, Gernold M, Gott P, Seelig A & Kloetzel PM (1993) Eur. J. Biochem. 216: 119–126
Glynne R, Kerr LA, Mockridge I, Beck S, Kelly A & Trowsdale J (1993) Eur. J. Immunol. 23: 860–866
Zwickl P, Grziwa A, Puhler G, Dahlmann B, Lottspeich F & Baumeister W (1992) Biochemistry 31: 964–972
Dick LR, Moomaw CR, Pramanik BC, De MG & Slaughter CA (1992) Biochemistry 31: 7347–7355
Puhler G, Weinkauf S, Bachmann L, Muller S, Engel A, Hegerl R & Baumeister W (1992) EMBO J. 11: 1607–1616
Kopp F, Dahlmann B & Hendil KB (1993) J. Mol. Biol. 229: 14–19
Schauer TM, Nesper M, Kehl M, Lottspeich F, Mullertauben-berger A, Gerisch G & Baumeister W (1993) J. Struct. Biol. III: 135–147
Hough R, Pratt G & Rechsteiner M (1986) J. Biol. Chem. 261: 2400–2408
Eytan E, Ganoth D, Armon T & Hershko A: (1989) Proc. Natl. Acad. Sci. USA 86: 7751–7755
Driscoll J & Goldberg AL (1990) J. Biol. Chem. 265: 4789–4792
Orino E, Tanaka K, Tamura T, Sone S, Ogura T & Ichihara A (1991) FEBS Lett. 284: 206–210
Peters JM, Harris JR & Kleinschmidt JA (1991) Eur. J. Cell Biol. 56: 422–32
Peters JM, Cejka Z, Harris JR, Kleinschmidt JA & Baumeister W: (1993) J. Mol. Biol. 234: 932–937
Richter-Ruoff B, Heinemeyer W & Wolf DH (1992) FEBS Lett. 302: 192–196
Seufert W & Jentsch S (1992) EMBO J. 11: 3077–3080
Fischer M, Hilt W, Richter-Ruoff B, Gonen H, Ciechanover A & Wolf DH (1994) FEBS Lett. 355: 69–75
Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–362
Dubiel W, Ferrell K, Pratt G & Rechsteiner M (1992) J. Biol. Chem. 267: 22699–22702
Shibuya H, Irie K, Ninomiya TJ, Goebl M, Taniguchi T & Matsumoto K (1992) Nature 357: 700–702
Dubiel W, Ferrell K & Rechsteiner M (1993) FEBS Lett. 323: 276–278
Dubiel W, Ferrel K & Rechsteiner M (1994) Biol. Chem. Hoppe-Seyler 375: 237–240
Ohana B, Moore PA, Ruben SM, Southgate CD, Green MR & Rosen CA (1993) Proc. Natl. Acad. Sci. USA 90: 138–142
Swaffield JC, Bromberg JF & Johnston SA (1992) Nature 357: 698–700
Gordon C, McGurk G, Dillon P, Rosen C & Hastie ND (1993) Nature 366: 355–357
Peters JM, Walsh MJ & Franke WW (1990) EMBO J. 9: 1757–1767
Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Frohlich KU & Kunau WH (1991) Cell 64: 499–510
Frohlich KU, Fries HW, Rudiger M, Erdmann R, Botstein D & Mecke D (1991) J. Cell. Biol. 114: 443–453
Schnall R, Mannhaupt G, Stucka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I & Feldmann H (1994) Yeast 10: 1141–1155
Ohba M (1994) FEBS Lett. 351: 263–266
Bachmair A, Finley D & Varshavsky A (1986) Science 234: 179–186
Varshavsky A (1992) Cell 69: 725–735
Dohmen RJ, Madura K, Bartel B & Varshavsky A (1991) Proc. Natl. Acad. Sci. USA 88: 7351–7355
Johnson ES, Bartel B, Seufert W & Varshavsky A (1992) EMBO J. 11: 497–505
Egner R, Thumm M, Straub M, Simeon A, Schuller HJ & Wolf DH (1993) J. Biol. Chem. 268: 27269–27276
Funayama S, Gancedo JM & Gancedo C (1980) Eur. J. Biochem. 109: 61–66
Muller D & Holzer H (1981) Biochem. Biophys. Res. Commun. 103: 926–933
Schork SM, Bee G, Thumm M & Wolf DH (1994) Nature 369: 283–284
Pegg AE (1986) Biochem. J. 234: 249–262
Murakami Y, Tanaka K, Matsufuji S, Miyazaki Y & Hayashi S (1992) Biochem. J. 283: 661–664
Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K & Ichihara A (1992) Nature 360: 597–599
Bercovich Z & Kahana C (1993) Eur. J. Biochem. 213: 205–210
Elias S, Bercovich B, Kahana C, Coffino P, Fischer M, Hilt W, Wolf DH & Ciechanover A (1994) Europ. J. Biochem. in press
Mamroud-Kidron E, Rosenberghasson Y, Rom E & Kahana C (1994) FEBS Lett. 337: 239–242
Nasmyth K & Shore D (1987) Science 237: 1162–1170
Herskowitz I (1988) Microbiol. Rev. 52: 536–553
Hochstrasser M & Varshavsky A (1990) Cell 61: 697–708
Chen P, Jentsch S & Hochstrasser M (1993) Cell 74: 357–369
Richter-Ruoff B, Wolf DH & Hochstrasser M (1994) FEBS Lett. 354: 50–52
Papa FR & Hochstrasser M (1993) Nature 366: 313–319
Nasmyth K (1993) Curr. Opin. Cell. Biol. 5: 166–179
Glotzer M, Murray AW & Kirschner MW (1991) Nature 349: 132–138
Surana U, Amon A, Dowzer C, McGrew J, Byers B & Nasmyth K (1993) EMBO J. 12: 1969–1978
Richter-Ruoff B & Wolf DH (1993) FEBS Lett 336: 34–6
Friedman H & Snyder M (1994) Proc. Natl. Acad. Sci. USA 91: 2031–2035
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hilt, W., Wolf, D.H. Proteasomes of the yeastS. cerevisiae: genes, structure and functions. Mol Biol Rep 21, 3–10 (1995). https://doi.org/10.1007/BF00990964
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00990964

