Skip to main content
Log in

Resistenzphysiologische Grundlagen der evolutiven Kälteakklimatisation von Sproßpflanzen

Physiological basis of evolutionary trends in low temperature resistance of vascular plants

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Gradations in cold resistance of plants with different latitudinal and altitudinal distribution, and the various categories of chilling and freezing resistance are hypothesized to be evolutionary steps of adaptive responses to increasing low temperature stress and annual seasonality. The gradual lowering of the critical phase transition temperature of biomembrane lipids, the capacity of persistent supercooling of tissues, and the development of a dormancy linked freezing-tolerance are considered to be essential mechanisms resulting in improved acclimatation to low temperature climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Alexandrov, V. Ya., Lomagin, A. G., Feldman, N. L., 1970: The responsive increase in thermostability of plant cells. — Protoplasma69, 417–458.

    Google Scholar 

  • Axelrod, D. I., 1972: Edaphic aridity as a factor in angiosperm evolution. — Amer. Naturalist106, 311–320.

    Google Scholar 

  • —, 1973: History of the Mediterranean ecosystem in California. — In:Castri, F. di,Mooney, H. A., (Eds.): Mediterranean Type Ecosystems. — Ecol. Studies7, 225–277. Berlin: Springer.

    Google Scholar 

  • Bauer, H., Harrasser, J., Bendetta, G., Larcher, W., 1971: Jahresgang der Temperaturresistenz junger Holzpflanzen im Zusammenhang mit ihrer jahreszeitlichen Entwicklung. — Ber. Deutsch. Bot. Ges.84, 561–570.

    Google Scholar 

  • Bialobok, St., 1974: Variation of cold hardiness of woody plants. — Polish Acad. Sci. Inst. Dendr. Kórnik Arboretum, FG-Po-238/E 21-CR-68 Final Report.

  • Biebl, R., 1962a: Protoplasmatische Ökologie der Pflanzen. Wasser und Temperatur. — ProtoplasmatologiaXII/1. — Wien: Springer.

    Google Scholar 

  • —, 1962b: Temperaturresistenz tropischer Meeresalgen. (Verglichen mit jener der Algen in temperierten Meeresgebieten.) — Botanica Marina4, 241–254.

    Google Scholar 

  • —, 1964: Temperaturresistenz tropischer Pflanzen auf Puerto Rico. — Protoplasma59, 133–156.

    Google Scholar 

  • Brooking, I. R., 1976: Male sterility inSorghum bicolor (L.)Moench induced by low night temperature. I. Timing of the stage of sensitivity. — Aust. J. Plant Physiol.3, 589–596.

    Google Scholar 

  • Burke, M. J., Stushnoff, C., 1979: Frost hardiness: A discussion of possible molecular causes of injury with particular reference to deep supercooling of water. — In:Mussell, Staples, R., (Eds.): Stress Physiology in Crop Plants, 197–225. — New York: Wiley.

    Google Scholar 

  • —, 1976: Freezing and injury in plants. — Ann. Rev. Plant Physiol.27, 507–528.

    Google Scholar 

  • Campbell, C. W., Knight, R. J., Jr., Zareski, N. L., 1977: Freeze damage to tropical fruits in southern Florida in 1977. — Proc. Florida State Hort. Soc.90, 254–257.

    Google Scholar 

  • Cappeletti, C., 1931: La concentrazione endocellulare nelle piante alpine in relazione all'altitudine. — Annali di Botanica,19, 278–332.

    Google Scholar 

  • Chapman, E., Wright, L. C., Raison, J. K., 1979: Seasonal changes in the structure and function of mitochondrial membranes of artichoke tubers. A requisite for surviving low temperatures during dormancy. — Plant Physiol.63, 363–366.

    Google Scholar 

  • Chen, H. H., Li., P. H., 1980: Characteristics of cold acclimation and deacclimation in tuber-bearingSolanum species. — Plant Physiol.65, 1146–1148.

    Google Scholar 

  • Christiansen, M. N., 1967: Periods of sensitivity to chilling in germination cotton. — Plant Physiol.42, 431–433.

    Google Scholar 

  • —, 1979: Physiological bases for resistance to chilling. — Hort Science14, 583–586.

    Google Scholar 

  • Cronquist, A., 1968: The Evolution and Classification of Flowering Plants. — Boston: Houghton Mifflin.

    Google Scholar 

  • Dereuddre, J., 1978: Effet de divers types de refroidissements sur le teneur en eau et sur la résistance au gel des bourgeons de rameaux d'Épicea en vie rallentie. — Physiol. Veg.16, 469–489.

    Google Scholar 

  • Dix, P. J., Street, H. E., 1976: Selection of plant cell lines with enhanced chilling resistance. — Ann. Bot.40, 903–910.

    Google Scholar 

  • Edlich, F., 1936: Einwirkung von Temperatur und Wasser auf aerophile Algen. — Arch. Mikrobiol.7, 62–109.

    Google Scholar 

  • Ernst, W., 1971: Zur Ökologie der Miombo-Wälder. — Flora160, 317–331.

    Google Scholar 

  • Flint, H. L., 1972: Cold hardiness of twigs ofQuercus rubra L. as a function of geographic origin. — Ecology53, 1163–1170.

    Google Scholar 

  • Fowler, D. B., Dvorak, J., Gusta, L. V., 1977: Comparative cold hardiness of severalTriticum species andSecale cereale L. — Crop Science17, 941–943.

    Google Scholar 

  • George, M. F., Burke, M. J., Pellett, H. M., Johnson, A. G., 1974a: Low temperature exotherms and woody plant distribution. — HortScience9, 519–522.

    Google Scholar 

  • —, —, —, 1974b: Supercooling in overwinteringAzalea flower buds. — Plant Physiol.54, 29–35.

    Google Scholar 

  • Harwood, C. E., 1981: Frost resistance of sub-alpineEucalyptus species. I. Experiments using a radiation frost room. — Aust. J. Bot. (in press).

  • Heber, U., Santarius, K. A., 1964: Loss of adenosine triphosphate synthesis caused by freezing and its relationship to frost hardiness problems. — Plant Physiol.39, 712–719.

    Google Scholar 

  • —, —, 1973: Cell death by cold and heat, and resistance to extreme temperatures. Mechanisms of hardening and dehardening. In:Precht, H., Christophersen, J., Hensel, H., Larcher, W., (Eds.): Temperature and Life, 232–263. — Heidelberg: Springer.

    Google Scholar 

  • —, —, 1976: Water stress during freezing. — In:Lange, O. L., Kappen, L., Schulze, E.-D., (Eds.): Water and Plant Life. — Ecol. Studies19, 253–267. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • —, 1979: Membrane damage and protection during freezing. In:Fennema, O., (Ed.): Proteins at Low Temperatures. — Adv. in Chemistry180, 159–189.

    Google Scholar 

  • Hedberg, O., 1964: Features of afro-alpine plant ecology. — Acta Phytogeogr. Suecica49, 1–144.

    Google Scholar 

  • Hoffmann, G., 1963: Die höchsten und tiefsten Temperaturen auf der Erde. — Umschau1963, 16–18.

    Google Scholar 

  • Holzer, K., 1978: Die Kulturkammertestung zur Erkennung des Erbwertes bei Fichte (Picea abies (L.)Karsten). 2. Merkmale des Vegetationsablaufes. — Centralbl. Gesamte Forstwesen95, 30–51.

    Google Scholar 

  • Holzer, K., 1979: Breeding Norway spruce for highly variable orographical conditions. — IUFRO Norway Spruce Meeting, Bucarest.

  • Horvath, I., Vigh, L., Belea, A., Farkas, T., 1979: Conversation of phosphatidyl cholin to phosphatidic acid in freeze injured rye and wheat cultivars. — Physiol. Plant.45, 57–62.

    Google Scholar 

  • Iljin, W. S., 1933: Über den Kältetod der Pflanzen und seine Ursachen. — Protoplasma20, 105–124.

    Google Scholar 

  • Jeremias, K., 1964: Über die jahresperiodisch bedingten Veränderungen der Ablagerungsform der Kohlenhydrate in vegetativen Pflanzenteilen (unter Berücksichtigung der Zucker der Raffinose-Gruppe). — Bot. Studien (Jena)15.

  • John, St. J. B., Christiansen, M. N., 1976: Inhibition of linolenic acid synthesis and modification of chilling resistance in cotton seedlings. — Plant Physiol.57, 257–259.

    Google Scholar 

  • Kacperska-Palacz, A., 1978: Mechanism of cold acclimation in herbaceous plants. — In:Li, P. H., Sakai, A., (Eds.): Plant Cold Hardiness and Freezing Stress, 139–152. — New York: Academic Press.

    Google Scholar 

  • Kärcher, H., 1931: Über Kälteresistenz einiger Pilze und Algen. — Planta14, 515–516.

    Google Scholar 

  • Kainmüller, Ch., 1975: Temperaturresistenz von Hochgebirgspflanzen. — Anzeiger Math.-Naturw. Klasse Österr. Akad. Wiss.1975, 67–75.

    Google Scholar 

  • Kaku, W., Iwaya, M., 1978: Low temperature exotherms in xylems of evergreen and deciduous broadleaved trees in Japan with references to freezing resistance and distribution range. — In:Li, P. H., Sakai, A., (Eds.): Plant Cold Hardiness and Freezing Stress, 227–239. New York: Academic Press.

    Google Scholar 

  • —, —, 1979: Deep supercooling in xylems and ecological distribution in the generaIlex, Viburnum andQuercus in Japan. — Oikos33, 402–411.

    Google Scholar 

  • Kappen, L., 1979: Widerstandsfähigkeit von Halophyten gegenüber Gefrieren und Salzstreß und ihre möglichen biochemischen Ursachen. — Ber. Deutsch. Bot. Ges.92, 55–71.

    Google Scholar 

  • —, 1970: Kälteresistenz von Flechten aus verschiedenen Klimagebieten. — Deutsch. Bot. Ges. Neue Folge,4, 61–65.

    Google Scholar 

  • Karow, A. M., Webb, W. R., 1965: A theory for injury and survival. — Cryobiology2, 99–108.

    PubMed  Google Scholar 

  • Kessler, W., Ruhland, W., 1938: Weitere Untersuchungen über die inneren Ursachen der Kälteresistenz. — Planta28, 159–204.

    Google Scholar 

  • Körner, Ch., Mayr, R., 1980: Stomatal behaviour in alpine plant communities between 600 and 2,600 m above sea level. — Proc. Symp. Brit. Ecol. Soc. 1979. — Oxford: Blackwell.

    Google Scholar 

  • Konakahara, M., 1975: Experimental studies on the mechanisms of cold damage and its protection methods inCitrus trees. — Special Bull.3, Shizouka Prefectural Citrus Exp. Sta. — Komagoe, Japan1975, 1–164.

    Google Scholar 

  • Konovalov, I. N., Lerman, R. I., Mihaleva, E. N., Smetannikova, A. N., 1962: Ob izmeneniah fiziologičeskih processov u introducirnemyh rastenii v svjazi s ih morozostoikostju. — Exper. Bot.15, 68–83.

    Google Scholar 

  • Krasavcev, O. A., 1979: O zaderžke ottoka pereohlazdennoj vody iz parenhimyh kletok drevesny jabloni (Delay in releasing supercooled water from parenchymal cells of apple tree wood). — Fiziol. Rast.26, 415–421.

    Google Scholar 

  • —, 1978: Ob osobennostiah morozostoikosti i vymerzanija parenhymih kletok drevesny jabloni. — Fiziol. Rast.25, 5–11.

    Google Scholar 

  • Langlet, O., 1937: Studier över tallens fysiologiska variabilitet och dess samband med klimatet. — Medd. Stat. Skogsförs. Anstr.29, 421–470.

    Google Scholar 

  • Larcher, W., 1954: Die Kälteresistenz mediterraner Immergrüner und ihre Beeinflußbarkeit. — Planta44, 607–638.

    Google Scholar 

  • —, 1963: Zur Frage des Zusammenhanges zwischen Austrocknungsresistenz und Frosthärte bei Immergrünen. — Protoplasma57, 569–587.

    Google Scholar 

  • —, 1969: Die Bedeutung des Faktors „Zeit“ für die photosynthetische Stoffproduktion. — Ber. Deutsch. Bot. Ges.82, 71–80.

    Google Scholar 

  • —, 1970: Kälteresistenz und Überwinterungsvermögen mediterraner Holzpflanzen. — Oecol. Plant5, 267–286.

    Google Scholar 

  • —, 1971: Die Kälteresistenz von Obstbäumen und Ziergehölzen subtropischer Herkunft. — Oecol. Plant6, 1–14.

    Google Scholar 

  • —, 1973: Gradual progress of damage due to temperature stress. Temperature resistance and survival. — In:Precht, H., Christophersen, J., Hensel, H., Larcher, W., (Eds.): Temperatur and Life, 194–231. — Berlin: Springer.

    Google Scholar 

  • —, 1975: Pflanzenökologische Beobachtungen in der Páramostufe der venezolanischen Anden. — Anz. Math.-Naturwiss. Kl. Österr. Akad. Wiss.1975, 194–213.

    Google Scholar 

  • —, 1977: Ergebnisse des IBP-Projekts „Zwergstrauchheide Patscherkofel“. — Sitz. Ber. Österr. Akad. Wiss., Math.-Naturw. K., Abt. I,186, 301–371.

    Google Scholar 

  • —, 1980a: Ökologie der Pflanzen. — 3. neubearbeitete und erweiterte Auflage. Stuttgart: Ulmer.

    Google Scholar 

  • —, 1980b: Klimastreß im Gebirge — Adaptationstraining und Selektionsfilter für Pflanzen. — Rheinisch-Westfäl. Akad. Wiss., Vorträge, N 291, 49–88. — Opladen: Westdeutscher Verlag.

    Google Scholar 

  • —, 1980c: Untersuchungen zur Frostresistenz von Palmen. — Anz. Österr. Akad. Wiss. Math.-Naturwiss. Kl.1980 (3), 1–12.

    Google Scholar 

  • —, 1980d: La posizione delle piante sempreverdi mediterranee nella evoluzione della resistenza al freddo. — Atti Ist. Veneto Sci. Mat. Nat.138, 103–111.

    Google Scholar 

  • —, 1982: Ecological significance of resistance to low temperature. — In: Encyclopedia of Plant Physiology. — Heidelberg: Springer (im Druck).

    Google Scholar 

  • —, 1960: Anwendung des Tripheyltetrazoliumchlorids zur Beurteilung von Frostschäden in verschiedenen Achsengeweben beiPirus-Arten, und Jahrgang der Resistenz. — Protoplasma51, 595–619.

    Google Scholar 

  • —, 1969: Die Temperaturresistenz als ökophysiologisches Konstitutionsmerkmal: 1.Quercus ilex und andere Eichenarten des Mittelmeergebietes. — Oecol. Plant4, 347–376.

    Google Scholar 

  • —, 1976: Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. — Oecol. Plant11, 361–374.

    Google Scholar 

  • Larsen, J. B., 1978: Die Frostresistenz der Douglasie [Pseudotsuga menziesii (Mirb.)Franco] verschiedener Herkünfte mit unterschiedlichen Höhenlagen. — Silvae Genetica27, 150–156.

    Google Scholar 

  • Layton, Parsons, R. F., 1972: Frost resistance of seedlings of two ages of some southern Australian woody species. — Bull. Torrey Club99, 118–122.

    Google Scholar 

  • Levitt, J., 1956: The Hardiness of Plants. — New York: Academic Press.

    Google Scholar 

  • —, 1966: Winter Hardiness in Plants. — InMeryman, H. T., (Ed.): Cyrobiology, 495–563. — London: Academic Press.

    Google Scholar 

  • —, 1972: Responses of Plants to Environmental Stresses. — New York: Academic Press.

    Google Scholar 

  • —, 1978: An overview of freezing injury and survival, and its interrelationships to other stresses. — InLi, P. H., Sakai, A., (Eds.): Plant Cold Hardiness and Freezing Stresses, 3–15. — New York: Academic Press.

    Google Scholar 

  • Lin, S. S., Peterson, M. L., 1975: Low temperature-induced floret sterility in rice. — Crop Science15, 657–660.

    Google Scholar 

  • Lutz, J. M., Hardenburg, R. E., 1968: The commercial storage of fruits, vegetables, and florist and nursery stocks. — Agric. Handbook66, Washington: US Gov. Printing Office.

    Google Scholar 

  • Lyons, J. M., 1973: Chilling injury in plants. — Ann. Rev. Plant Physiol.24, 445–466.

    Google Scholar 

  • —, 1965: Solidification of unsaturated/saturated fatty acid mixtures and its relationship to chilling in plants. — J. Oil Chemists Sci.42, 1056–1058.

    Google Scholar 

  • —, 1979: Strategies for altering chilling sensitivity as a limiting factor in crop production. — InMussel, H., Staples, R. G., (Eds.): Stress Physiology in Crop Plants, 179–196. — New York: Wiley.

    Google Scholar 

  • —, 1964: Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants. — Plant Physiology39, 262–268.

    Google Scholar 

  • Marcellos, H., Single, W. V., 1979: Supercooling and heterogeneous nucleation of freezing in tissues of tender plants. — Cryobiology16, 74–77.

    PubMed  Google Scholar 

  • Mazur, P., 1977: The role of intracellular freezing in the death of cells cooled at supraoptimal rates. — Cryobiology14, 251–272.

    PubMed  Google Scholar 

  • McConnell, D. B., Sheehan, T. J., 1978: Anatomical aspects of chilling injury to leaves ofPhalaenopsis Bl. — Hort Sci.13, 705–706.

    Google Scholar 

  • McWilliam, J. R., Ferrar, P. J., 1974: Photosynthetic adaptation of higher plants to thermal stress. — InBieleski, R. L., Ferguson, A. R., Cresswell, M. M., (Eds.): Mechanisms of Regulation of Plant Growth. — Bull. Royal Society of New Zealand, Wellington,12, 467–476.

    Google Scholar 

  • Melcarek, P. K., Brown, G. N., 1979: Chlorophyll fluorescence monitoring of freezing point exotherms in leaves. — Cryobiology16, 69–73.

    PubMed  Google Scholar 

  • Messeri, A., 1951: Ritmi climatici e ritmi vegetativi. — N. Giorn. Bot. Ital.58, 535–549.

    Google Scholar 

  • Mittelstädt, H., 1969: Gefriervorgänge an Pflanzenteilen. — D.A.L. Tagungsbericht96, 149–173.

    Google Scholar 

  • Mohn, C. A., Pauley, S., 1969: Early performance of cottonwood and sycamore as related to geographic and environmental factors. — Ecology48, 785–793.

    Google Scholar 

  • Molisch, H., 1897: Untersuchungen über das Erfrieren der Pflanzen. — Jena: Fischer.

    Google Scholar 

  • Müller-Thurgau, H., 1882: Über Zuckeranhäufung in Pflanzenteilen in Folge niederer Temperatur. — Landw. Jahrbücher11, 751–828.

    Google Scholar 

  • Münch, E., 1923: Die Knospenentfaltung der Fichte und die Spätfrostgefahr. — Allg. Forst- u. Jagd-Z.1923, 241–265.

    Google Scholar 

  • Olien, C. R., 1978: Analyses of freezing stresses and plant response. — InLi, P. H., Sakai, A., (Eds.): Plant Cold Hardiness and Freezing Stresses, 37–48. — New York: Academic Press.

    Google Scholar 

  • Palta, J. P., Li, P. H., 1978: Cell membrane properties in relation to freezing injury. — InLi, P. H., Sakai, A., (Eds.): Plant Cold Hardiness and Freezing Stresses, 93–115. — New York: Academic Press.

    Google Scholar 

  • —, —, 1979: Frost-hardiness in relation to leaf anatomy and natural distribution of severalSolanum species. — Crop Sci.19, 665–671.

    Google Scholar 

  • —, 1977a: Freezing injury in onion bulb cells. I. Evaluation of the conductivity method and analysis of ion and sugar efflux from injured cells. — Plant Physiology60, 393–397.

    Google Scholar 

  • —, —, —, 1977b: Freezing injury in onion bulb cells. II. Post-thawing injury or recovery. — Plant Physiol.60, 398–401.

    Google Scholar 

  • Palta, J. P., Levitt, J., Stadelmann, E. J., Burke, M. J., 1977c: Dehydration of onion cells: A comparison of freezing vs. desiccation and living vs. dead cells. — Physiol. Plantarum41, 273–279.

    Google Scholar 

  • Parker, J., 1962: Seasonal changes in cold resistance and free sugars of some hardwood tree barks. — For. Sci.8, 255–262.

    Google Scholar 

  • Patterson, B. D., Murata, T., Graham, D., 1976: Electrolyte leakage induced by chilling inPassiflora species tolerant to different climates. — Aust. J. Plant Physiol.3, 435–442.

    Google Scholar 

  • —, 1978: Chilling resistance inLycopersicon hirsutum Humb. & Bonpl., a wild tomato with a wide altitudinal distribution. — Aust. J. Plant Physiol.5, 609–617.

    Google Scholar 

  • Pike, C. S., Berry, J. A., 1979: Phase separation temperatures of phospholipids from warm and cool climate plants. — Carnegie Inst. Year Book78, 163–168.

    Google Scholar 

  • —, —, —, 1979: Fluorescence polarization studies of membrane phospholipid phase separations in warm and cool climate plants. — InLyons, J. M., Graham, D., Raison, J. K., (Eds.): Low Temperature Stress in Crop Plants, 305–318. — New York: Academic Press.

    Google Scholar 

  • Pisek, A., 1960: Immergrüne Pflanzen. — InRuhland, W., (Ed.): Handbuch der Pflanzenphysiologie, Vol.5/II, 415–459. — Berlin: Springer.

    Google Scholar 

  • —, 1954: Zusammenhang zwischen Austrocknungsresistenz und Frosthärte bei Immergrünen. — Protoplasma44, 30–46.

    Google Scholar 

  • —, 1947: Die Temperaturbeeinflußbarkeit der Frosthärte von Nadelhölzern und Zwergsträuchern an der alpinen Waldgrenze. — Ber. Naturwiss.-Med. Ver. Innsbruck47, 33–52.

    Google Scholar 

  • —, 1958: Assimilationsvermögen und Respiration der Fichte (Picea excelsa Link.) in verschiedener Höhenlage und der Zirbe (Pinus cembra L.) an der alpinen Waldgrenze. — Planta51, 518–543.

    Google Scholar 

  • —, 1967: Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. I. Temperaturminimum der Netto-Assimilation, Gefrier- und Frostschadensbereiche der Blätter. — FloraB 157, 239–264.

    Google Scholar 

  • Pollock, B. M., Toole, V. K., 1966: Imbibition period as the critical temperature sensitive stage in germination of lima bean seeds. — Plant Physiology41, 221–229.

    Google Scholar 

  • Quamme, H. A., 1976: Relationship of the low temperature exotherm to apple and pear production in North America. — Can. J. Plant Sci.56, 493–500.

    Google Scholar 

  • —, 1978: Mechanism of supercooling in overwintering peach flower buds. — J. Amer. Soc. Hort. Sci.103, 57–61.

    Google Scholar 

  • Rajashekar, C., Burke, M. J., 1978: The occurrence of deep undercooling in the generaPyrus, Prunus, andRosa: A preliminary report. — InLi, P. H., Sakai, A., (Eds.): Plant Cold Hardiness and Freezing Stress, 213–225. — New York: Academic Press.

    Google Scholar 

  • -Gusta, L. V., Burke, M. J., 1979: NMR investigations on the moment of freezing injury in hardy herbaceous tissues. — AAPP Meeting 1979, Contr. 425.

  • Rowley, J. A., 1976: Development of freezing tolerance in leaves of C4 grasses. — Aust. J. Plant Physiol.3, 597–603.

    Google Scholar 

  • —, 1975: Freezing sensitivity of leaf tissue of C4 grasses. — Aust. J. Plant Physiol.2, 447–451.

    Google Scholar 

  • Sakai, A., 1971: Freezing resistance of relicts from the arcto-tertiary flora. — New Phytol.70, 1199–1205.

    Google Scholar 

  • —, 1972: Freezing resistance of evergreen and broad-leaf trees indigenous to Japan. — J. Jap. For. Soc.54, 333–339.

    Google Scholar 

  • —, 1978a: Low temperature exotherm of winter buds of hardy conifers. — Plant & Cell Physiol.19, 1439–1446.

    Google Scholar 

  • —, 1978b: Frost hardiness of flowering and ornamental trees. — J. Jap. Soc. Hort. Sci.47, 248–260.

    Google Scholar 

  • —, 1978c: Freezing tolerance of evergreen and deciduous broadleaved trees in Japan with reference to tree regions. — Low Temp. Sci. Ser. B36, 1–19.

    Google Scholar 

  • —, 1978d: Freezing tolerance of primitive willows ranging to subtropics and tropics. — Low Temp. Sci., Ser. B36, 21–29.

    Google Scholar 

  • —, 1979: Freezing avoidance mechanism of primordial shoots of conifer buds. — Plant & Cell Physiol.20, 1381–1390.

    Google Scholar 

  • —, 1979: Cold hardiness of the genusCamellia. — Amer. Soc. Hort. Sci.104, 53–57.

    Google Scholar 

  • —, 1979: Frost hardiness of Ericoideae. — Amer. Soc. Hort. Sci.104, 26–28.

    Google Scholar 

  • —, 1971: Freezing resistance of conifers. — Silvae Genetica20, 53–100.

    Google Scholar 

  • —, 1970: Freezing resistance of alpine plants. — Ecology51, 665–671.

    Google Scholar 

  • —, 1978: Freezing resistance of New Zealand trees and shrubs. — New Zealand J. Ecol.1, 51–61.

    Google Scholar 

  • —, 1973: Freezing resistance of trees in North America with reference to tree regions. — Ecology54, 118–126.

    Google Scholar 

  • Santarius, K. A., Heber, U., Krause, G. H., 1979: Untersuchungen über die physiologisch-biochemischen Ursachen von Empfindlichkeit und Resistenz von Biomembranen gegenüber extremen Temperaturen und hohen Salzkonzentrationen. — Ber. Deutsch. Bot. Ges.92, 209–223.

    Google Scholar 

  • Scheumann, W., Schönbach, 1968: Die Prüfung der Frostresistenz von 25Larix leptolepis-Herkünften eines internationalen Provenienzversuches mit Hilfe von Labor-Prüfverfahren. — Arch. Forstw.17, 597–611.

    Google Scholar 

  • Schölm, H. E., 1968: Untersuchungen zur Hitze- und Frostresistenz einheimischer Süßwasseralgen. — Protoplasma65, 97–118.

    Google Scholar 

  • Silberbauer-Gottsberger, I., Morawetz, W., Gottsberger, G., 1977: Frost damage of Cerrado plants in Botucatu, Brazil, as related to the geographical distribution of the species. — Biotropica9, 253–261.

    Google Scholar 

  • Siminovitch, D., 1979: Protoplasts surviving freezing to — 196 °C and osmotic dehydration in 5 molar salt solutions prepared from bark of winter black locust trees. — Plant Physiol.63, 722–725.

    Google Scholar 

  • Smithberg, M. H., Weiser, C. J., 1968: Patterns of variation among climatic races of red-osier dogwood. — Ecology49, 495–505.

    Google Scholar 

  • Smillie, R. M., Melchers, G., v. Wettstein, D., 1970: Chilling resistance of somatic hybrids of tomato and potato. — Carlsberg Res. Comm.44, 127–132.

    Google Scholar 

  • Stebbins, G. L., 1952: Aridity as a stimulus to evolution. — Amer. Naturalist86, 33–44.

    Google Scholar 

  • —, 1965: The probable growth habit of the earliest flowering plants. — Ann. Missouri Bot. Garden52, 457–468.

    Google Scholar 

  • Stocker, O., 1970: Der Wasser- und Photosynthese-Haushalt von Wüstenpflanzen der mauretanischen Sahara. I. Regengrüne und immergrüne Bäume. — Flora159, 539–572.

    Google Scholar 

  • Takhtajan, A., 1973: Evolution und Ausbreitung der Blütenpflanzen. — Stuttgart: Fischer.

    Google Scholar 

  • Till, O., 1956: Über die Frosthärte von Pflanzen sommergrüner Laubwälder. — Flora143, 499–542.

    Google Scholar 

  • Tumanov, I. I., 1962: Frost resistance of fruit trees. — 16th Intern. Hort Congr. Bruxelles1962, 737–743.

    Google Scholar 

  • —, 1979: Fiziologija zakalivanija i morozostoikosti rastenii. — Moskva: Nauka.

    Google Scholar 

  • Tjurina, M. M., 1957: Isledovanie morozostoikosti rastenii v uslovijah vysokogorii Pamira. — Stalinabad: Akad. Nauk Tadžik. SSR.

    Google Scholar 

  • —, 1978: Interaction between development of frost resistance and dormancy in plants. — Acta Hort.81, 51–60.

    Google Scholar 

  • Ulmer, W., 1935: Über den Jahresgang der Frosthärte einiger immergrüner Arten der alpinen Stufe, sowie der Zirbe und der Fichte. — Jahrb. Wiss. Bot.84, 553–592.

    Google Scholar 

  • van Steenis, C. G. J., 1968: Frost in the tropics. — InMisra, R., Gopal, B., (Eds.): Proc. Symp. Recent Adv. Trop. Ecol.1968, 155–167.

    Google Scholar 

  • Wagner, A., 1892: Zur Kenntnis des Blattbaues der Alpenpflanzen und dessen biologischer Bedeutung. — Akad. Wiss. Math.-Naturwiss. Kl.100, 487–547.

    Google Scholar 

  • Wallace, L. L., Harrison, A. T., 1978: Carbohydrate mobilization and movement in alpine plants. — Amer. J. Bot.65, 1035–1040.

    Google Scholar 

  • Wardle, P., Campbell, A. D., 1976: Seasonal cycle of tolerance to low temperatures in three native woody plants, in relation to their ecology and post-glacial history. — Proc. New Zealand Ecolog. Soc.23, 85–91.

    Google Scholar 

  • Weiser, C. J., 1970: Cold resistance and injury in woody plants. — Science169, 1269–1278.

    Google Scholar 

  • Williams, G. J., McMillan, C., 1971: Frost tolerance ofLiquidambar styraciflua native to the United States, Mexico, and Central America. — Can. J. Bot.49, 1551–1558.

    Google Scholar 

  • Wilson, J. M., 1976: The mechanism of chill- and drought-hardening ofPhaseolus vulgaris leaves. — New Phytol.76, 257–270.

    Google Scholar 

  • —, 1978: Leaf respiration and ATP levels at chilling temperatures. — New Phytol.80, 325–334.

    Google Scholar 

  • —, 1974: The acclimatization of plants to chilling temperatures in relation to the fatty-acid composition of leaf polar lipids. — New Phytol.73, 805–820.

    Google Scholar 

  • Winter, A., 1976: Die Temperaturresistenz vonTrachycarpus fortunei Wendl. und anderen Palmen. — Diss. Innsbruck.

  • Yelenosky, G., 1975: Cold hardening inCitrus stems. — Plant Physiol.56, 540–543.

    Google Scholar 

  • —, 1977: The potential ofCitrus to survive freezes. — Proc. Int. Soc. Citriculture1, 199–203.

    Google Scholar 

  • —, 1978: Cold hardiness of young hybrid trees ofEremocitrus glauca (Lindl.)Swing. — Hort Science13 (3), 257–258.

    Google Scholar 

  • Yoshida, S., 1978: Phospholipid degradation and its control during freezing of plant cells. — InLi, P. H., Sakai, A. (Eds.): Plant Cold Hardiness and Freezing Stress, 117–135. — New York: Academic Press.

    Google Scholar 

  • Yoshida, S., 1979: Freezing injury and phospholipid degradation in vivo in woody plant cells. III. Effects of freezing on activity of membranebound phorpholipase D in microsome-enriched membranes. — Plant Physiol.64, 252–256.

    Google Scholar 

  • Yoshimura, F., 1967: Studies on the cold injury of citrus trees. — Mem. Fac. Agr. Kochi Univ. No.18, 79–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larcher, W. Resistenzphysiologische Grundlagen der evolutiven Kälteakklimatisation von Sproßpflanzen. Pl Syst Evol 137, 145–180 (1981). https://doi.org/10.1007/BF00989871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00989871

Key words

Navigation