Philosophical Studies

, Volume 76, Issue 1, pp 71–106 | Cite as

Paradoxes of denotation

  • Keith Simmons


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bar-On, Dorit (1993) “Indeterminacy of Translation: Theory and Practice”.Philosophy and Phenomenological Research LIII(4), pp. 781–810.Google Scholar
  2. Barwise, Jon and Etchemendy, John (1987)The Liar. Oxford University Press, Oxford.Google Scholar
  3. Burge, Tyler (1979) “Semantical Paradox”.Journal of Philosophy 76, pp. 169–198; reprinted with a postscript in R. L. Martin (ed) 1984, pp. 83–117.Google Scholar
  4. Gaifman, Haim (1992) “Pointers to Truth.”Journal of Philosophy, pp. 223–261.Google Scholar
  5. Gaifman, Haim (1988) “Operational Pointer Semantics: Solution of Self-referential Puzzles I.”Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge, M. Vardi and Morgan Kaufman (eds) Los Altos, California, 1988, pp. 43–60.Google Scholar
  6. Gödel, Kurt (1944) “Russell's Mathematical Logic.” In: P. A. Schilpp (ed)The Philosophy of Bertrand Russell, pp. 123–153. La Salle, Open Court.Google Scholar
  7. König, Julius (1905). “On the Foundation of Set Theory and the Continuum Problem.” In: Van Heijenoort, 1967, pp. 145–149.Google Scholar
  8. Kripke, Saul (1975) “Outline of a Theory of Truth.”Journal of Philosophy 72, pp. 690–716; reprinted in R. L. Martin (ed) 1984, pp. 53–81.Google Scholar
  9. Martin, Robert L (ed) (1984)Recent Essays on Truth and the Liar Paradox, Oxford University Press, Oxford.Google Scholar
  10. Parsons, Charles (1974) “The Liar Paradox.”Journal of Philosophical Logic 3, pp. 381–412; reprinted with a postscript in R. L. Martin, 1984, pp. 9–45.Google Scholar
  11. Peano, Guiseppe (1906) “Super Theorema de Cantor-Bernstein et Additione”.Revista de Mathematica, t. VIII, pp. 136–157; reprinted in Peano,Opere scelte, Edizioni cremonese, Rome, 1957, Vol. 1, pp. 344–358.Google Scholar
  12. Poincaré, Henri (1963)Mathematics and Science: Last Essays, Dover Publications Inc., New York.Google Scholar
  13. Ramsey, Frank (1925) “The Foundations of Mathematics.”Proceedings of the London Mathematical Society, Series 2, 25, 338–384; reprinted in Ramsey,The Foundations of Mathematics and Other Logical Essays, Richard Braithwaite (ed), Harcourt, Brace, New York, 1931.Google Scholar
  14. Richard, Jules (1906) “Les principes des mathématiques et le problème des ensembles.”Revue générale des sciences pures et appliquées 16, p. 541; translated in Jean van Heijenoort, 1967, pp. 143–144.Google Scholar
  15. Russell, Bertrand (1906) “Les paradoxes de la logique”.Revue de métaphysique et de morale 14, pp. 627–650.Google Scholar
  16. Russell, Bertrand (1908) “Mathematical Logic as Based on the Theory of Types.”American Journal of Mathematics 30, pp. 222–262; reprinted in Van Heijenoort, 1967 (ed), pp. 150–182 (this version cited here).Google Scholar
  17. Simmons, Keith (1993)Universality and the Liar: An Essay on Truth and the Diagonal Argument, Cambridge University Press, Cambridge.Google Scholar
  18. Simmons, Keith (1994) “A Paradox of Definability: Richard's and Poincaré's Ways Out.”History and Philosophy of Logic, 15, pp. 33–44.Google Scholar
  19. Simmons, Keith (1990) “The Diagonal Argument and the Liar.”Journal of Philosophical Logic 19, pp. 277–303.Google Scholar
  20. Skolem, Thoralf (1922) “Some Remarks on Axiomatized Set Theory”. In: Van Heijenoort, 1967.Google Scholar
  21. Tarski, Alfred (1983) “The Concept of Truth in Formalized Languages”. In: Tarski,Logic, Semantics, Metamathematics (second edition). Hackett 1983, pp. 152–278.Google Scholar
  22. Tarski, Alfred (1969) “Truth and Proof.”Scientific American 220, pp. 63–77.Google Scholar
  23. Tarski, Alfred (1944) “The Semantic Conception of Truth.”Philosophy and Phenomenological Research, iv (1944), pp. 341–376; reprinted in Leonard Linsky (ed.)Semantics and the Philosophy of Language, University of Illinois, 1952, pp. 13–47 (this version cited here).Google Scholar
  24. Van Heijenoort, Jean (ed.) (1967)From Frege to Gödel: A Source Book in Mathematical Logic. Harvard University Press, 1967.Google Scholar
  25. Von Neumann, John (1925) “An Axiomatization of Set Theory”. In: Van Heijenoort, 1967, pp. 394–413.Google Scholar
  26. Zermelo, Ernst (1908) “Investigations in the Foundations of Set Theory I”. In: van Heijenoort 1967.Google Scholar
  27. Ziff, Paul (1972) “What is Said.” In: Ziff,Understanding Understanding. Cornell University Press, 1972, pp. 21–38.Google Scholar
  28. Ziff, Paul (1988) “Linguistic and Communication Systems.”Philosophia 18, pp. 3–18.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Keith Simmons
    • 1
  1. 1.Department of PhilosophyThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations