Journal of Chemical Ecology

, Volume 11, Issue 4, pp 507–523 | Cite as

Effect of hypoxanthine-3(N)-oxide and hypoxanthine-1(N)-oxide on central nervous excitation of the black tetraGymnocorymbus ternetzi (Characidae, Ostariophysi, Pisces) indicated by dorsal light response

  • W. Pfeiffer
  • G. Riegelbauer
  • G. Meier
  • B. Scheibler


The change of state in the central nervous system ofGymnocorymbus ternetzi after detection of hypoxanthine-l(N)-oxide, hypoxanthine-3(N)-oxide, and of the alarm substance from conspecifics was measured quantitatively by means of the fishes' equilibrium behavior. The fish swam freely in a tiny cage, illuminated horizontally from one side. The change of the angle of inclination of the dorsoventral axis of the fish was registered by means of a videorecorder. The recordings were later measured on the monitor in single frames at 0.2-sec intervals where the equilibrium position of the fish could be accurately determined ± 1 °. Various substances were presented to the fish, and their effects upon equilibrium position were recorded. An enhanced optical alertness shown by an increase in the fishes' inclination was generally produced with alarm substance. Without any additional stimulation, the factorU, representing quantitatively the degree of the change of central state, varied slightly within the experimental period of 1 min; however, this factor never exceededU= 1.0 ± 0.15 in control fish. The increase ofU usually exceeded considerably the value 1.15 when skin extract from conspecifics or 7–8 μg of hypoxanthine-3(N)-oxide were given. However, when hypoxanthine-l (N)-oxide was presented,U generally did not exceed 1.15. The difference between hypoxanthine-3(N)-oxide and hypoxanthine-l(N)-oxide was highly significant. This result is in accordance with the findings on fish schools ofDanio malabaricus, where hypoxanthine-3(N)-oxide elicited the fright reaction, but hypoxanthine-1(N)-oxide was ineffective. The results support the hypothesis that the alarm substance from the skin ofPhoxinus phoxinus is identical with hypoxanthine-3(N)-oxide. The results with alarm substance or hypoxanthine-3(N)-oxide did not show any adaptation. This was also true in fish that were stimulated repeatedly at intervals of a couple of minutes only. InGymnocorymbus, which has compensated for removal of the otolith of one utriculus, conspecific skin extract triggers the typical postoperative phenomenon, i.e., rotation around the fishes' long axis towards the operated side. Whereas such a decompensation could be elicited by hypoxanthine-3(N)-oxide as well, hypoxanthine-l(N)-oxide had no effect. This finding is interpreted as an effect of the alarm substance and of hypoxanthine-3(N)-oxide on the centers of equilibrium.

Key words

Fish Gymnocorymbus ternetzi (Boulenger) fright reaction pheromone alarm substance hypoxanthine-3(N)-oxide hypoxanthine-1 (N)-oxide dorsal light response equilibrium behavior central nervous excitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens, W. 1950. Über die Brauchbarkeit der Aufhellungsmethoden bei morphologischen und phy- siologischen Untersuchungen über das Fischlabyrinth.Z. Vergl. Physiol. 32:49–59.Google Scholar
  2. Argentini, M. 1976. Isolierung des Schreckstoffes aus der Haut der ElritzePhoxinus phoxinus (L.). Dissertation, Chemisches Institut (Leiter: M. Viscontini) der Universität Zürich.Google Scholar
  3. Bodznick, D. 1978. Calcium ion: An odorant for natural water discriminations and the migratory behavior of sockeye salmon.J. Comp. Physiol. 127:157–166.Google Scholar
  4. Hubes, C.L., andHubes, C. 1953. An improved graphical analysis and comparison of series of samples.System. Zool. 2:49–57.Google Scholar
  5. Pfeiffer, W. 1960. Über die Schreckreaktion bei Fischen und die Herkunft des Schreckstoffes.Z. Vergl. Physiol. 43:578–614.Google Scholar
  6. Pfeiffer, W. 1962. The fright reaction of fish.Biol. Rev. 37:495–511.PubMedGoogle Scholar
  7. Pfeiffer, W. 1963. Alarm substances.Experientia 19:113–123.PubMedGoogle Scholar
  8. Pfeiffer, W. 1964. Equilibrium orientation in fish.Int. Rev. Gen. Exp. Zool. 1:77–111.Google Scholar
  9. Pfeiffer, W. 1966. Die Schreckreaktion der Fische und Kaulquappen. Naturwissenschaften 53:565–570.PubMedGoogle Scholar
  10. Pfeiffer, W. 1974. Pheromones in fish and amphibia,in M. C. Birch (ed.). Pheromones. North-Holland, Amsterdam.Google Scholar
  11. Pfeiffer, W. 1975. Über fluoreszierende Pterine aus der Haut von Cypriniformes (Pisces) und ihre Beziehung zum Schreckstoff.Rev. Suisse Zool. 82:705–711.Google Scholar
  12. Pfeiffer, W. 1977. The distribution of fright reaction and alarm substance cells in fishes.Copeia 1977:653–665.Google Scholar
  13. Pfeiffer, W. 1978. Heterocyclic compounds as releasers of the fright reaction in the giant danio,Danio malabaricus (Jerdon) (Cyprinidae, Ostariophysi, Pisces).J. Chem. Ecol. 4:665–673.Google Scholar
  14. Pfeiffer, W. 1982. Chemical signals in communication,in Chemoreception in Fishes. T. J. Hara (ed.). Elsevier, Amsterdam.Google Scholar
  15. Pfeiffer, W., andRiegelbauer, G. 1978. The effect of the alarm substance on the central nervous excitation of the black tetraGymnocorymbus ternetzi (Characidae, Ostariophysi, Pisces) indicated by dorsal light response.J. Comp. Physiol. 123:281–288.Google Scholar
  16. Schoen, L. 1957. Mikroableitungen einzelner zentraler Vestibularisneurone von Knochenfischen bei Statolithenreizen.Z. Vergl. Physiol. 39:399–417.Google Scholar
  17. Smith, R.J.F. 1982. The adaptive significance of the alarm substance-fright reaction system,in T. J. Hara (ed.). Chemoreception in Fishes. Elsevier, Amsterdam.Google Scholar
  18. von Frisch, K. 1941. Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung.Z. Vergl. Physiol. 29:46–145.Google Scholar
  19. von Holst, E. 1950a. Quantitative Messung von Stimmungen im Verhalten der Fische.Symp. Soc. Exp. Biol. 4:143–172.Google Scholar
  20. von Holst, E. 1950b. Quantitative Untersuchungen über Umstimmungsvorgänge im Zentralner- vensystem. I. Der Einfluss des “Appetits” auf das Gleichgewichtsverhalten vonPterophyllum.Z. Vergl. Physiol. 31:134–148.Google Scholar
  21. von Holst, E. 1950c. Die Arbeitsweise des Statolithenapparates bei Fischen.Z. Vergl. Physiol. 32:60–120.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • W. Pfeiffer
    • 1
  • G. Riegelbauer
    • 1
  • G. Meier
    • 1
  • B. Scheibler
    • 1
  1. 1.Institut für BiologieUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations