Plant Systematics and Evolution

, Volume 152, Issue 3–4, pp 167–183 | Cite as

Phylogenetic relationships in theSideritis leucantha group (Lamiaceae)

  • A. Ma Fernández-Peralta
  • J. J. González-Aguilera


Six closely related taxa of the sect.Eusideritis of the genusSideritis (S. leucantha, S. pusilla, S. flavovirens, S. granatensis, S. biflora andS. osteoxylla) are analysed to elucidate their phylogenetic relationships and position within the sect.Eusideritis. Meiotic behaviour, karyotype features, size and fertility of pollen grains, DNA amounts and seed protein profiles are reviewed. A polyploid origin of the group (from x = 7) and the further diversification through dysploidy and chromosome repatterning is postulated.S. osteoxylla is apparently of hybrid origin.

Key words

Angiosperms Lamiaceae Sideritis Meiotic behaviour karyotypes size and fertility of pollen grains DNA values seed protein electrophoresis phylogenetic relationships 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen, C. H., Bushuk, K., 1970: Nature of proteins in Triticale and its parental species III. A comparison of their electrophoresis pattern. — Can. J. Plant. Sci.50, 25–30.Google Scholar
  2. Fernández-Peralta, A. Ma, 1981: Estudios citogenéticos y evolutivos en el géneroSideritis L. (Lamiaceae). — Tesis Doctoral. División de Biología. Facultad de Ciencias. Universidad Autónoma. Madrid, Spain.Google Scholar
  3. —, 1981: Números cromosomáticos de plantas occidentales, 129–133. — Anales Jard. Bot. Madrid38(1, 281–284.Google Scholar
  4. —, —, 1982: Cytogenetic and evolutionary studies on the Spanish species ofReseda L. sect.Luteola Dumort (Resedaceae). — Taxon31(1, 1–8.Google Scholar
  5. —, —, 1984: Genome differentiation between two closely related species ofSideritis L. (Lamiaceae). — Genetica64, 177–183.Google Scholar
  6. —, —, 1983: Polymorphism for asymmetric reciprocal translocations in two species of the genusSideritis L. (Lamiaceae). — Chromosoma88, 83–89.Google Scholar
  7. Gomez García, J., 1970: Notas cariológicas sobre el géneroSideritis L. en España. — Anales Inst. Bot. A. J. Cavanilles27, 115–124.Google Scholar
  8. —, 1974: Contribución a la citotaxonomía del géneroSideritis L. sec.Eusideritis Bth. Nota III. — Las Ciencias39(1, 74–79.Google Scholar
  9. González-Aguilera, J. J., Fernández-Peralta, A. M a, 1981: Karyology and evolution inSesamoides. — Pl. Syst. Evol.139, 147–154.Google Scholar
  10. —, —, 1983: The nature of polyploidy inReseda sect.Leucoreseda (Resedaceae). — Pl. Syst. Evol.142, 223–237.Google Scholar
  11. —, —, 1984: Phylogenetic relationships in the familyResedaceae L. — Genetica64, 185–197.Google Scholar
  12. —, —, 1980a: Estudios citogenéticos y evolutivos en especies españolas de la familiaResedaceae L. secciónGlaucoreseda DC. — Anales Jard. Bot. Madrid36, 311–320.Google Scholar
  13. —, —, —, 1980b: Cytogenetic and evolutionary studies on the Spanish species of the familyResedaceae L. sectionsPhyteuma L. andResedastrum Duby. — Bol. Soc. Brot.23, 519–536.Google Scholar
  14. Hall, O., Johnson, B. L., 1963: Electrophoretic analysis of the amphidiploid of theStipa viridula ×Oryzopsis hymenoides and its parental species. — Heredity48, 530–535.Google Scholar
  15. Hinegardner, R., 1968: Evolution in Genome Size. — InAyala, F. J., (Ed.): Molecular Evolution. — Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers.Google Scholar
  16. Houts, K. P., Hillebrand, G. R., 1976: An electrophoretic and serological investigation of seed proteins inGaleopsis tetrahit (Labiatae) and its putative parental species. — Amer. J. Bot.63, 156–165.Google Scholar
  17. Hunziker, J. H., 1968: Protein electrophoresis as an aid in genome analysis. — The Nucleus, Suppl. Vol., 226–234.Google Scholar
  18. Ladizinsky, G., Hymowitz, T., 1979: Seed protein electrophoresis in taxonomic and evolutionary studies. — Theor. Appl. Genet.54, 145–151.Google Scholar
  19. Levin, D. A., Schaal, B. A., 1970: Reticulate evolution onPhlox as seen through protein electrophoresis. — Amer. J. Bot.57, 977–987.Google Scholar
  20. Murray, B. G., Craig, T. L., Rajhathy, T., 1970: A protein electrophoresis study of three amphidiploids and eight species inAvena. — Can. J. Genet. Cytol.12, 651–665.Google Scholar
  21. Nagl, W., 1978: Endopolyploidy and Polyteny in Differentiation and Evolution. — Amsterdam, New York, Oxford: North-Holland Publishing Company.Google Scholar
  22. —, 1980: Species and hybrid diagnosis in plants by means of quantitative light and electron microscopic morphometry of chromatin texture. — Microscopica Acta, Suppl.4, 19–25.Google Scholar
  23. Shepherd, E. W., 1968: Chromosomal control of endosperm protein in wheat and rye. — InFinlay, K. W., Shepherd, E. W., (Eds.): Third. Int. Wheat Genet. Symp., p. 86–96. — London.Google Scholar
  24. Sokal, R. R., Rohlf, F. J., 1969: Biometry. — San Francisco: W. H. Freeman and Company.Google Scholar
  25. Stebbins, G. L., 1950: Variation and Evolution in Plants. — New York: Columbia University Press.Google Scholar
  26. —, 1971: Chromosomal Evolution in Higher Plants. — London: Edwards Arnold Ltd.Google Scholar
  27. Vaughan, J. G., Denford, K. E., 1968: An acrylamide gel electrophoretic study of the seed proteins ofBrassica andSinapis species with special reference to their taxonomic value. — J. Exp. Bot.19, 724–732.Google Scholar
  28. Zuckerkandl, E., 1976: Gene control in eukaryotes and C-value paradox: “excess” DNA as an impediment to transcription of coding sequences. — J. Mol. Evol.9, 73–104.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. Ma Fernández-Peralta
    • 1
  • J. J. González-Aguilera
    • 1
  1. 1.Departamento de Genética, C-XV, División de BiologíaFacultad de Ciencias, Universidad Autónoma de MadridCantoblancoSpain

Personalised recommendations