Skip to main content
Log in

Arrangement and size distribution of repeat and single copy DNA sequences in four species ofCucurbitaceae

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

DNA sequence organization patterns have been studied in fourCucurbitaceae plant species, namely,Luffa cylindrica (sponge gourd),L. acutangula (ridge gourd),Benincasa hispida (ash gourd) andCoccinia indica (ivy gourd). Extensive interspersion of repeat and single copy sequences has been observed in sponge gourd and ridge gourd. In ash gourd and ivy gourd, however, there is a limited interspersion of these sequences and a large portion of the single copy DNA remains uninterspersed. The interspersed repetitive sequences are composed of a major class (75–80%) of short repeats (300 base pairs long) and a minor class (15–20%) of long repeats (2 000–4 000 base pairs) in all the four species. The average length of single copy sequences dispersed among repeats is 1 800–2 900 base pairs. In spite of these gross similarities in the genome organization in the four species, the fraction of repeats and single copy sequences involved in short and long period interspersion patterns, and fraction of single copy sequences remaining uninterrupted by repeats are vastly different. The probable implications of these differences with respect to speciation events and rates of genome evolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels, R., Driscoll, C., Peacock, W. J., 1978: Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). — Chromosoma (Berl.)70, 67–89.

    Google Scholar 

  • Bhave, M., Lagu, M., Ranjekar, P. K., 1984a: Molecular analysis ofCucurbitaceae genomes: I., Comparison of DNA reassociation kinetics in six plant species. — Plant Sci. Lett.33, 127–136.

    Google Scholar 

  • —, —, 1984b: Molecular analysis ofCucurbitaceae genomes: II., Comparison of high resolution thermal denaturation profiles of DNAs in seven plant species. — Indian J. Biochem. Biophys.21, 81–84.

    Google Scholar 

  • Britten, R. J., Davidson, E. H., 1969: Gene regulation for higher cells—a theory. — Science165, 349–357.

    Google Scholar 

  • —, 1974: Analysis of repeating DNA sequences by reassociation. — InGrossman, L., Moldave, K., (Eds.): Methods in Enzymology 29E, pp. 363–418. — New York: Academic Press.

    Google Scholar 

  • —, —, 1976: Evolutionary divergence and length of repetitive sequences in sea urchin DNA. — J. Mol. Evol.9, 1–23.

    Google Scholar 

  • Cullis, C. A., 1981: DNA sequence organization in the flax genome. — Biochim. Biophys. Acta652, 1–15.

    Google Scholar 

  • Davidson, E. H., Britten, R. J., 1979: Regulation of gene expression: Possible role of repetitive sequences. — Science204, 1052–1059.

    Google Scholar 

  • —, 1973: General interspersion of repetitive with non-repetitive sequence elements in the DNA ofXenopus. — J. Mol. Biol.77, 1–23.

    Google Scholar 

  • Dover, G., 1982: A role for the genome in the origin of species. — InBarigozzi, C., (Ed.): Progress in Clinical and Biological Research96, pp. 435–459. — New York: Alan R. Liss Inc.

    Google Scholar 

  • Epplen, J. T., Leipoldt, M., Engel, W., Schmidtke, J., 1978: DNA sequence organization in avian genomes. — Chromosoma (Berl.)69, 307–321.

    Google Scholar 

  • Goldberg, R. B., 1978: DNA sequence organization in the soybean plant. — Biochem. Genet.16, 45–68.

    Google Scholar 

  • Graham, D. E., Neufeld, B. R., Davidson, E. H., Britten, R. J., 1974: Interspersion of repetitive and non-repetitive DNA sequences in the sea urchin genome. — Cell1, 127–137.

    Google Scholar 

  • Gupta, V. S., Ranjekar, P. K., 1981: DNA sequence organization in finger millet (Eleusine coracana). — J. Biosci.3, 417–430.

    Google Scholar 

  • —, 1981: DNA sequence organization in rice genome. — Biochim. Biophys. Acta656, 147–154.

    Google Scholar 

  • Hake, S., Walbot, V., 1980: The genome ofZea mays, its organization and homology to related grasses. — Chromosoma (Berl.)79, 251–270.

    Google Scholar 

  • Harshey, R. M., Jayaram, M., Chamberlain, M. E., 1979: DNA sequence organization inPhycomyces blakesleeanus. — Chromosoma (Berl.)73, 143–151.

    Google Scholar 

  • Hudspeth, M. E. S., Timberlake, W. E., Goldberg, R. B., 1977: DNA sequence organization in the water moldAchlya. — Proc. Natl. Acad. Sci. U.S.A.74, 4332–4336.

    Google Scholar 

  • Kiper, M., Herzfeld, H., 1978: DNA sequence organization in the genome ofPetroselinum sativum (Umbelliferae). — Chromosoma (Berl.)65, 335–351.

    Google Scholar 

  • Krumlauf, R., Marzluf, G. A., 1979: Characterization of the sequence complexity and organization of theNeurospora crassa genome. — Biochemistry18, 3705–3713.

    Google Scholar 

  • Mandel, M., Marmur, J., 1968: Use of ultraviolet absorbance temperature profiles for determining the guanine plus cytosine content of DNA. — InGrossman, G. L., Moldave, K., (Eds.): Methods in Enzymology, 12B, pp. 195–206. — New York: Academic Press.

    Google Scholar 

  • Manning, J. E., Schmid, C. W., Davidson, N., 1975: Interspersion of repetitive and nonrepetitive DNA sequences in theDrosophila melanogaster genome. — Cell4, 141–155.

    Google Scholar 

  • Murray, M. G., Cuellar, R. E., Thompson, W. F., 1978: DNA sequence organization in the pea genome. — Biochemistry17, 5781–5790.

    Google Scholar 

  • Nagl, W., Capesius, I., 1977: Repetitive DNA and heterochromatin as factors of karyotype evolution in phylogeny and ontogeny of orchids. — Chromosomes Today6, 141–152.

    Google Scholar 

  • Ranjekar, P. K., Pallotta, D., Lafontaine, J. G., 1976: Analysis of the genome of plants II. Characterization of repetitive DNA in barley (Hordeum vulgare) and wheat (Triticum aestivum). — Biochim. Biophys. Acta425, 30–40.

    Google Scholar 

  • Roy, R. P., Saran, S., Dutt, B., 1972: Speciation in relation to breeding system in theCucurbitaceae. — InMurti, Y. S., Johri, B. M., Mohan Ram, H. Y., Varghese, T. M., (Eds.): Advances in Plant Morphology, Prof. V. Puri Commemoration volume, pp. 193–202. Meerut, India: Sarita Prakashan.

    Google Scholar 

  • Roy, R. P., Thakur, V., Trivedi, R. N., 1966: Cytogenetical studies inMomordica. — J. Cytol. Genet.1, 30–40.

    Google Scholar 

  • Schachat, F., O'Conner, D. J., Epstein, H. F., 1978: The moderately repetitive DNA sequences ofCoenorhabditis elegans do not show short-period interspersion. — Biochim. Biophys. Acta520, 688–692.

    Google Scholar 

  • Smith, G. P., 1976: Evolution of repeated DNA sequences by unequal crossover. — Science191, 528–535.

    Google Scholar 

  • Stebbins, G. L., 1982: Plant speciation. — InBarigozzi, C., (Ed.): Progress in Clinical and Biological Research96, pp. 21–39. — New York: Alan R. Liss Inc.

    Google Scholar 

  • Thakur, M. R., Chaudhari, B., 1966: Inheritance of some qualitative characters inLuffa species. — Indian J. Genet. Plant Breeding26, 79–86.

    Google Scholar 

  • Thompson, W. F., Murray, M. G., 1980: Sequence organization in pea and mungbean DNA and a model for genome evolution. — InDavies, D. R., Hopwood, D. A., (Eds.): Proceedings of the 4th John Innes Symposium, The Plant Genome, pp. 31–45. — Norwich, England: The John Innes Charity.

    Google Scholar 

  • —, —, 1981: The nuclear genome: Structure and function. — In:Marcus, A., (Ed.): The Biochemistry of Plants6, pp. 1–81. — New York: Academic Press.

    Google Scholar 

  • Timmis, J. N., Deumling, B., Ingle, J., 1975: Localization of satellite DNA sequences in nuclei and chromosomes of two plants. — Nature (Lond.)257, 152–155.

    Google Scholar 

  • Ullrich, R. C., Kohorn, B. P., Specht, C. A., 1980: Absence of short-period repetitive sequence interspersion in the BasidiomyceteSchizophyllum Commune. — Chromosoma (Berl.)81, 371–378.

    Google Scholar 

  • Vogt, V. M., 1973: Purification and further properties of single-strand-specific nuclease fromAspergillus oryzae. — Eur. J. Biochem.33, 192–200.

    Google Scholar 

  • Wagenmann, M., Epplen, J. T., Bachmann, K., Engel, W., Schmidtke, J., 1981: DNA sequence organization in relation to genome size in birds. — Experientia37, 1274–1276.

    Google Scholar 

  • Wetmur, J. G., Davidson, N., 1968: Kinetics of renaturation of DNA. — J. Mol. Biol.31, 349–370.

    Google Scholar 

  • Wimpee, C. F., Rawson, J. R. Y., 1979: Characterization of the nuclear genome of pearl millet. — Biochim. Biophys. Acta562, 192–206.

    Google Scholar 

  • Young, M. W., 1979: Middle repetitive DNA: a fluid component of theDrosophila genome. — Proc. Natl. Acad. Sci. U.S.A.76, 6274–6278.

    Google Scholar 

  • Zimmerman, J. L., Goldberg, R. B., 1977: DNA sequence organization in the genome ofNicotiana tabacum. — Chromosoma (Berl.)59, 227–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Molecular Analysis ofCucurbitaceae Genomes, III. — NCL Communication No.: 3595.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhave, M.R., Gupta, V.S. & Ranjekar, P.K. Arrangement and size distribution of repeat and single copy DNA sequences in four species ofCucurbitaceae . Pl Syst Evol 152, 133–151 (1986). https://doi.org/10.1007/BF00989423

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00989423

Key words

Navigation