Plant Systematics and Evolution

, Volume 195, Issue 3–4, pp 149–158 | Cite as

Diterpenes, taxonomic markers?

  • Maria Raquel Figueiredo
  • Maria Auxiliadora C. Kaplan
  • Otto R. Gottlieb


The chemosystematic potential of the 15 more common diterpene types in vascular plants was evaluated. Oxidation levels and skeletal specializations indicate diterpene biosynthesis to involve contrasting modes in pteridophytes and angiosperms on one hand, and in gymnosperms on the other. In angiosperm lineages diterpene diversification accompanies trends towards increase of herbaceousness and depletion of polyphenols, i.e., towards evolutionary advance. Nevertheless, even closely related families may display disjunctions of diterpene type and substitution. Thus the taxonomic value of this metabolic class remains confined to single (advanced) families.

Key words

Vascular plants Diterpenes labdanes pimaranes kauranes atisanes abietanes clerodanes structural types skeletal specialization oxidative substitution oxidation state replacement characters herbaceousness polyphenols chemosystematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borin, M. R. de M. B., Gottlieb, O. R., 1993: Steroids, taxonomic markers? — Pl. Syst. Evol.184: 41–76.Google Scholar
  2. Bremer, K., 1987: Tribal interrelationships of theAsteraceae. — Cladistics3: 210–253.Google Scholar
  3. Connolly, J. D., Hill, R. A., 1991: Dictionary of terpenoids,2. — London: Chapman & Hall.Google Scholar
  4. Cronquist, A., 1988: The evolution and classification of flowering plants. — New York: The New York Botanical Garden.Google Scholar
  5. Dev, S., 1985: CRC Handbook of terpenoids: Diterpenes,I. — Florida: CRC Press.Google Scholar
  6. Gershenzon, J., Mabry, T. J., 1983: Secondary metabolites and the higher classification of angiosperms. — Nordic J. Bot.3: 5–34.Google Scholar
  7. Gottlieb, O. R., 1982: Micromolecular evolution, systematics and ecology. — Berlin, Heidelberg, New York: Springer.Google Scholar
  8. , 1989: The role of oxygen in phytochemical evolution towards diversity. — Phytochemistry28: 2545–2558.Google Scholar
  9. , 1990: Phytochemicals: Differentiation and function. — Phytochemistry29: 1715–1724.Google Scholar
  10. , 1990: A chemosystematic overview of pteridophytes and gymnosperms. — InKubitzki, K., (Ed.): The families and genera of vascular plants,I. — Berlin, Heidelberg, New York: Springer.Google Scholar
  11. , 1993: The role of ellagitannins in the evolution of dicotyledons. — Taxon42: 539–552.Google Scholar
  12. Harborne, J. B., Turner, B. L., 1984: Plant chemosystematics. — London: Academic Press.Google Scholar
  13. Seaman, F., Bohlman, F., Zdero, C., Mabry, T. J., 1990: Diterpenes of flowering plants.Compositae (Asteraceae). — Berlin, Heidelberg, New York: Springer.Google Scholar
  14. Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. The principles and practice of numerical classification. — San Francisco: Freeman.Google Scholar
  15. Webster, G. L., 1994: Synopsis of the genera and suprageneric taxa ofEuphorbiaceae. — Ann. Missouri Bot. Gard.81: 33–144.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Maria Raquel Figueiredo
    • 1
  • Maria Auxiliadora C. Kaplan
    • 2
  • Otto R. Gottlieb
    • 1
  1. 1.Departamento de Fisiologia e FarmacodinâmicaInstituto Oswaldo Cruz, FiocruzRio de JaneiroBrasil
  2. 2.Núcleo de Pesquisas de Produtos NaturaisUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations