Advertisement

GeoJournal

, Volume 35, Issue 3, pp 363–372 | Cite as

Extension of nitrogen fixation to rice — Necessity and possibilities

  • Ladha J. K. 
  • Reddy P. M. 
Article

Abstract

Nitrogen supply is critical in attaining yield potential. Achieving the 50% higher yields that will be needed by 2025 will require at least double the 10 m tons of N fertilizer that is currently used each year for rice production. But manufacturing of fertilizer N is dependent on fast depleting non-renewable energy resources. It is in this context that biological nitrogen-fixation-derived N assumes importance in the lowland soils that provide about 86% of the world's rice.

Among the conventional systems, green-manure legumes have high N supply potential. But due to associated additional costs such as labour and land opportunity, they do not form an attractive option for farmers. Rice associative N2 fixation (ANF) although has low activities, any increase will be attractive to farmers as it does not require changes in existing cropping systems, and soil and water management practices. Recently, we identified quantitative trait loci underlying ANF in rice (Wu, P.; Zhang, G.; Ladha, J. K.; McCouch, S. and Huang, N.: Restriction fragment length polymorphic markers associated with rice varietal ability to stimulate nitrogen fixation in rhizosphere. Rice Genetic Newsletter 1994 — submitted). The presence of this trait in rice provides an evidence of the occurrence of genetic factors which regulate interaction of rice with diazotrophs in rhizosphere. However, the ANF trait governing the loose diazotroph-rice association appears to have limited potential for enhancing yield. To achieve higher yields, intimate association similar to sugar cane-Acetobacter/legume-rhizobia symbioses will have to be developed in rice. In this paper, we discuss the strategies for transferring nitrogen-fixing capacity to rice.

Keywords

Quantitative Trait Locus Nitrogen Fixation Water Management Practice Supply Potential Rice Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Mallah, M. K.; Davey, M. R.; Cocking, E. C.: Formation of nodular structures on rice seedlings by rhizobia. J. Exp. Bot. 40, 473–478 (1989)Google Scholar
  2. App, A. A.; Santiago, T.; Menguito, C.; Ventura, W.; Tirol, A.; Po, J.; Watanabe, I.; De Datta, S. K.; Roger, P. A.: Estimation of the nitrogen balance for irrigated rice and the contribution of phototrophic nitrogen fixation. Field Crops Res. 2, 17–27 (1984)Google Scholar
  3. App, A. A.; Watanabe, I.; Ventura, T. S.; Bravo, M.; Jurey, C. D.: The effect of cultivated and wild rice varieties on the nitrogen balance of flooded soil. Soil Sci. 141, 448–452 (1986)Google Scholar
  4. Appleby, C. A.: Leghemoglobin andRhizobium respiration. Ann. Rev. Plant Physiol. 35, 443–478 (1984)Google Scholar
  5. Baldani, V. L. D.; James, E.; Baldani, J. I.; Dobereiner, J.: Localization of the N2-fixing bacteriumHerbaspirillum seropedicae within root cells of rice. An. Acad Bras. Ci. 64, 431 (1992)Google Scholar
  6. Becker, M.; Ali, M.; Ladha, J. K.: Green manure technology: potential, usage and limitations. Plant Soil (1994) (in press).Google Scholar
  7. Bender, G. L.; Preston, L.; Barnard, D.; Rolfe, B. G.: Formation of nodule-like structures on the roots of the non-legumes rice and wheat. In: Gresshoff, P. M.; Roth, L. E.; Stacey, G.; Newton, W. E. (eds.), Nitrogen Fixation: Achievements and Objectives, 825. Chapman and Hall, London and New York 1990.Google Scholar
  8. Bennett, J.; Ladha, J. K.: Introduction: feasibility of nodulation and nitrogen fixation in rice. In: Khush, G. S.; Bennett, J. (eds.), Nodulation and Nitrogen Fixation in Rice: Potential and Prospects 1–14. International Rice Research Institute, Los Baños, Philippines 1992.Google Scholar
  9. Bouldin, D. R.: The chemistry and biology of flooded soils in relation to the nitrogen economy in rice fields. In: De Datta, S. K.; Patrick, W. H. Jr. (eds.), Nitrogen Economy of Flooded Rice Soils, 1–14. Martinus Nijhoff Publishers, The Netherlands 1986.Google Scholar
  10. Caetano-Anolles, G.; Gresshoff, P. M.: Plant genetic control of nodulation. Ann. Rev. Microbiol. 45, 345–382 (1991)Google Scholar
  11. Cassman, K. G.; De Datta, S. K.; Olk, D. C.; Alcantara, J. M.; Samson, M. I.; Descalsota, J. P.; Dizon, M. A.: Yield decline and the nitrogen economy of long-term experiments on continuous, irrigated rice systems in the tropics. Adv.Soil Sci. (1994) (in press)Google Scholar
  12. Cocking, E. C.; Al-Mallah, M. K.; Benson, E.; Davey, M. R.: Nodulation of non-legumes by rhizobia. In: Gresshoff, P. M.; Roth, L. E.; Stacey, G.; Newton, W. E. (eds.), Nitrogen Fixation: Achievements and Objectives, 813–823. Chapman and Hall, London and New York 1990.Google Scholar
  13. Cocking, E. C.; Davey, M. R.; Kothari, S. L.; Srivastava, J. S.; Jing, J.; Ridge, R. W.; Rolfe, B. G.: Altering the specificity control of the interaction between rhizobia and plants. Symbiosis 14, 123–130 (1992a)Google Scholar
  14. Cocking, E. C.; Srivastava, J. S.; Kothari, S. L.; Davey, M. R.: Invasion of non-legume plants by diazotrophic bacteria. In: Khush, G. S.; Bennett, J. (eds.), Nodulation and Nitrogen Fixation in Rice: Potential and Prospects 119–121. International Rice Research Institute, Philippines 1992b.Google Scholar
  15. Cocking, E. C.; Srivastava, J. S.; Cook, J. M.; Kothari, S. L.; Davey, M. R.: Studies on nodulation of maize, wheat, rice and oilseed rape: interactions of rhizobia with emerging lateral roots. In: Yanfu, N.; Kennedy, I. R.; Tingwei, C. (eds.), Biological Nitrogen Fixation — Novel Associations With Non-legume Crops, 53–58. Qingdao Ocean University Press, Qingdao, China 1994.Google Scholar
  16. Christiansen-Weniger, C.: Para-nodule induction in maize with indole acetic acid (IAA) and its infection with ammonia excretingAzospirillum brasilense. In: Hegazi (ed.), Proceedings of the Sixth International Symposium on Nitrogen Fixation with Non-legumes. Kluwer Academic Publishers, The Netherlands 1994 (in press)Google Scholar
  17. Christiansen-Weniger, C.; Vanderleyden, J.: Ammonium-excretingAzospirillum sp. become intracellularly established in maize(Zea mays) para-nodules. Biol. Fertil. Soils 17, 1–8 (1994)Google Scholar
  18. Da Silva, J. G.; Serra, G. E.; Moreira, J. R.; Goncalves, J. C.; Goldenberg, J.: Energy balance for ethyl alcohol production from crops. Science 210, 903–906 (1978)Google Scholar
  19. de Bruijn, F. J.; Jing, Y.; Dazzo, F. B.: Potential and pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants, such as rice. Plant Soil (1995) (in press)Google Scholar
  20. Denarie, J.; Cullimore, J.: Lipo-oligosaccharide nodulation factors: A minireview. New class of signaling molecules mediating recognition and morphogenesis. Cell 74, 951–954 (1993)Google Scholar
  21. Denarie, J; Debelle, F; Rosenberg, C.: Signaling and host range variation in nodulation. Ann. Rev. Microbiol. 46, 497–531 (1992)Google Scholar
  22. Diaz, C. L.; Melchers, L. S.; Hooykaas, P. J. J.; Lugtenberg, B. J. J.; Kijne, J. W.: Root lectin as a determinant of host-plant specificity in theRhizobium-legume symbiosis. Nature 338, 579–581 (1989)Google Scholar
  23. Dixon, R.; Vanderleyden, J.; Romero, D.; Boddey, R. M.; Cocking, E. C.; Denarie, J.; Elmerich, C.; Rolfe, B. G.; Sprent, J.: Extension of nitrogen fixation to other crops. In: Palacios, R.; Mora, J.; Newton, W. E. (eds.), New Horizons In Nitrogen Fixation, 765–768. Kluwer Academic Publishers, The Netherlands 1993.Google Scholar
  24. Dobereiner, J.; Baldani, V. L. D.; Olivares, F.; Reis, V. M.: Endophytic diazotrophs: The key to BNF in graminecious plants. Sixth International Congress on BNF with Non-legumes held in Egypt 1993.Google Scholar
  25. Dobereiner, J.; Reis, V. M.; Paula, M. A.; Olivares, F.: Endophytic diazotrophs in sugar cane, cereals and tuber crops. In: Palacios, R.; Mora, J.; Newton, W. E. (eds.), New Horizons in Nitrogen Fixation, 671–674. Kluwer Academic Publishers, The Netherlands 1993.Google Scholar
  26. Grant, I. F.; Roger, P. A.; Watanabe, I.: Ecosystem manipulation for increasing biological N2 fixation by blue-green algae (cyanobacteria) in lowland rice fields. Biological Agriculture and Horticulture 3, 299–315 (1986)Google Scholar
  27. Hurek, T.; Reinhold-Hurek, B.; van Montagu, M.; Kellenberger, E.: Root colonization and systemic spreading ofAzoarcus sp. Strain BH72 in grasses. J. Bacteriol. 176, 1913–1923 (1994)Google Scholar
  28. IFA-IFDC-FAO: Fertilizer Use by Crop. Food and Agriculture Organization, Rome 1992.Google Scholar
  29. IRRI: Rice Research in a Time of Change. International Rice Research Institute's Medium-term Plan for 1994–1998. IRRI, Los Baños, Philippines 1993.Google Scholar
  30. Iyama, S.; Sano, Y.; Fuji, T.: Diallel analysis of nitrogen fixation in the rhizosphere of rice. Plant Sci. Lett. 30, 427–435 (1993)Google Scholar
  31. Jing, Y.; Li, G.; Jin, G.; Shan, X.; Zhang, B.; Guan, C.; Li, J.: Rice root nodules with acetylene reduction activity. In: Gresshoff, P. M.; Roth, L. E.; Stacey, G.; Newton, W. E. (eds.), Nitrogen Fixation: Achievements and Objectives, 829. Chapman and Hall, London and New York 1990.Google Scholar
  32. Jing, Y.; Li, G.; Shan, X.: Development of nodulelike structure on rice roots. In: Khush, G. S.; Bennett, J. (eds.), Nodulation and Nitrogen Fixation in Rice: Potential and Prospects, 123–126. International Rice Research Institute, Philippines 1992.Google Scholar
  33. Keen, N. T.; Staskawicz, B. J.: Host range determinations in plant pathogens and symbionts. Ann. Rev. Phytopathol. 42, 421–440 (1988)Google Scholar
  34. Kennedy, I. R.; Tchan, Y. T.: Biological nitrogen fixation and nonleguminous field crops: recent advances. Plant Soil 141, 93–118 (1992)Google Scholar
  35. Khush, G. S.; Bennett, J. (eds.): Nodulation and Nitrogen Fixation in Rice: Potential and Prospects. International Rice Research Institute, Los Baños, Philippines 1992.Google Scholar
  36. Kundu, D. K.; Ladha, J. K.: Efficient management of soil and biologically fixed nitrogen in intensively cultivated rice fields. Soil Biol. Biochem. (1994) (in press)Google Scholar
  37. Ladha, J. K.: Studies on N2 fixation by free-living and rice plant-associated bacteria in wetland rice field. Bionature 6(2), 47–58 (1986)Google Scholar
  38. Ladha, J. K.; Kundu, D. K.; Angelo-Van Coppenolle, M. G.; Peoples, M. B.; Carangal, V. R.; Dart, P. J.: Grain and forage legume effects on soil nitrogen dynamics in lowland rice-based cropping system. Soil Sci. Soc. Am. J. (1995) (in press)Google Scholar
  39. Ladha, J. K.; Pareek, R. P.; Becker, M.: Stem-nodulating legume-Rhizobium symbiosis and its agronomic use in lowland rice. Adv. Soil Sci. 20, 148–192 (1992)Google Scholar
  40. Ladha, J. K.; Tirol, A. C.; Daroy, M. L. G.; Caldo, G.; Ventura, W.; Watanabe, I.: Plant-associated N2 fixation (C2H2 reduction) by five rice varieties, and relationship with plant growth characters as affected by straw incorporation. Soil Sci. Plant Nutr. 32(1), 91–106 (1986)Google Scholar
  41. Ladha, J. K.; Tirol-Padre, A.; Punzalan, G. C.; Watanabe, I.; De Datta, S. K.: Ability of wetland rice to stimulate biological nitrogen fixation and utilize soil nitrogen. In: Bothe, H.; de Bruijn, F. J.; Newton, W. E. (eds.), Nitrogen Fixation: Hundred Years After, 747–752. Gustav Fischer, Stuttgart, New York 1988.Google Scholar
  42. Ladha, J. K.; Tirol-Padre, A.; Reddy, C. K.; Ventura, W.: Prospects and problems of biological nitrogen fixation in rice production: A critical assessment. In: Palacios, R.; Mora, J.; Newton, W. E. (eds.), New Horizons in Nitrogen Fixation, 677–682. Kluwer Academic Publishers, The Netherlands 1993.Google Scholar
  43. Lakshmi, V.; Rao, A. S.; Vijayalakshmi, K.; Lakshmi-Kumari, M.; Tilak, K. V. B. R.; Subba Rao, N. S.: Establishment and survival ofSpirillum lipoferum. Proc. Ind. Acad. Sci. Section 386, 397–404 (1977)Google Scholar
  44. Landsmann, J.; Dennis, E. S.; Higgins, T. J. V.; Appleby, C. A.; Kortt, A. A.; Peacock, W. J.: Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324, 166–168 (1986)Google Scholar
  45. LaRue, T. A.; Weeden, N. F.: The symbiosis genes of the host. First European Nitrogen Fixation Conference, Szeged, Hungary 1994.Google Scholar
  46. Leaver, C. J.; Gray, M. W.: Mitochondrial genome organization and expression in higher plants. Ann. Rev. Plant Physiol. 33, 373–402 (1982)Google Scholar
  47. Lerouge, P.; Roche, P.; Faucher, C.; Maillet, F.; Truchet, G.; Prome, J. C.; Denarie, J.: Symbiotic host-specificity ofRhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784 (1990)Google Scholar
  48. Li, G.; Jing, Y.; Shan, X.; Wang, H.; Guan, C.: Identification of rice nodules that containRhizobium bacteria. Chin. J. Bot. 3, 8–17 (1991)Google Scholar
  49. Lidholm, J.; Gustafsson, P.: Homologues of the green algagidA gene and the liverwortfrxC gene are present on the chloroplast genome of conifers. Plant Mol. Biol. 17, 787–798 (1991)Google Scholar
  50. Long, S. R.:Rhizobium-legume nodulation: Life together in the underground. Cell 56, 203–214 (1989)Google Scholar
  51. Merrick, M.; Dixon, R: Why don't plants fix nitrogen? Trends Biotech. 2, 162–166 (1984)Google Scholar
  52. Mudahar, M. S.: Energy requirements, technology and resources in fertilizer sector. In: Helsel Z. R. (ed.), Energy in Plant Nutrition and Pest Control, 25–62. Elsevier Publications, New York 1987a.Google Scholar
  53. Mudahar, M. S.: Energy, efficiency, economics and policy in the fertilizer sector. In: Helsel Z. R. (ed.), Energy in Plant Nutrition and Pest Control, 133–163. Elsevier Publications, New York 1987b.Google Scholar
  54. Nap, J-P.; Bisseling, T.: Developmental biology of a plant-prokaryote symbiosis: The legume root nodule. Science 250, 948–954 (1990)Google Scholar
  55. Olivares, F. L.; Janes, E. K.; Reis, V. M.; Baldani, V. L. D.; Baldani, J. I.; Dobereiner, J.: Colonization of vascular tissue byHerbaspirillum spp. in sorghum and sugar cane. Fitopathologia Brasileira 18 (Suppl. 290), 313 (1993)Google Scholar
  56. Paula, M. A.; Reis, V. M.; Dobereiner, J.: Interaction ofGlomus clarum withAcetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugar cane (Saccharum spp.) and sweet sorghum (Sorghum vulgare). Biol. Fertil. Soils 11, 111–115 (1991)Google Scholar
  57. Plazinski, J.; Innes, R. W.; Rolfe, B. G: Expression ofRhizobium trifolii early nodulation genes on maize and rice plants. J. Bacteriol. 163, 812–815 (1985)Google Scholar
  58. Reddy, P. M.; Roger, P. A.: Dynamics of algal populations and acetylene-reducing activity in five rice soils inoculated with blue-green algae. Biol. Fertil. Soils 6, 14–21 (1988)Google Scholar
  59. Robson, R. L.; Postgate, J. R.: Oxygen and hydrogen in biological nitrogen fixation. Ann. Rev. Microbiol. 34, 183–207 (1980)Google Scholar
  60. Roger, P. A.: Reconsidering the utilization of blue-green algae in wetland rice cultivation. In: Datta, S. K.; Sloger, C. (eds.), Biological Nitrogen Fixation Associated With Rice Production, 119–141. Oxford & IBH Publications, New Delhi 1991.Google Scholar
  61. Roger, P. A.; Grant, I. F.; Reddy, P. M.; Watanabe, I.: The photosynthetic aquatic biomass in wetland rice fields and its effect on nitrogen dynamics. In: Efficiency of Nitrogen Fertilizers for Rice, 43–68. International Rice Research Institute, Philippines 1987.Google Scholar
  62. Roger, P. A.; Ladha, J. K.: Biological N2 fixation in wetland rice fields: Estimation and contribution to nitrogen balance. Plant Soil 141, 41–55 (1992)Google Scholar
  63. Roger, P. A.; Watanabe, I.: Technologies for utilizing biological nitrogen fixation in wetland rice: Potentialities, current usage, and limiting factors. Fert. Res. 9, 39–77 (1986)Google Scholar
  64. Rolfe, B. G.; Bender, G. L.: Evolving aRhizobium for non-legume nodulation. In: Gresshoff, P. M.; Roth, L. E.; Stacey, G.; Newton, W. E. (eds.), Nitrogen Fixation: Achievements and Objectives, 779–786. Chapman and Hall, London and New York 1990.Google Scholar
  65. Rolfe, B. G.; Gresshoff, P. M.: Genetic analysis of legume nodule initiation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39, 297–319 (1988)Google Scholar
  66. Rolfe, B. G.; Ride, K. M.; Ridge, R. W.:Rhizobium nodulation of non-legumes. In: Khush, G. S.; Bennett, J. (eds.), Nodulation and Nitrogen Fixation in Rice: Potential and Prospects, 83–86. International Rice Research Institute, Philippines 1992.Google Scholar
  67. Rossbach, S.; McSpadden, B.; Kulpa, D.; de Bruijn. F. J.: Rhizopine synthesis and catabolism genes for the creation of “Biased Rhizospheres” and as marker system to detect (genetically modified) microorganisms in the soil. Risk Assessment Methodologies 1994 (submitted)Google Scholar
  68. Sandhu, G. R.; Aslam, Z.; Salim, M.; Sattar, A.; Qureshi, R. H.; Ahmed, N.; Jones, R. G. W.: The effect of salinity on the yield and composition ofDiplachne fusca (Kallar grass). Plant Cell Environ. 4, 177–181 (1981)Google Scholar
  69. Sandhu, G. R.; Malik, K. A.: Plant succession — a key to the utilization of saline soils. Nucleus (Karachi) 12, 35–38 (1975)Google Scholar
  70. Santiago-Ventura, T.; Bravo, M.; Daez, C.; Ventura, W.; Watanabe, I.; App, A. A.: Effects of N fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice. Plant Soil 93, 405–411 (1986)Google Scholar
  71. Scheres, B.; Van de Wiel, C.; van Eck, H.; Zwartkruis, F.; Wolters, A.-M.; Gloudemans, T.; van Kammen, A.; Bisseling, T.: Theenod12 gene product is involved in the infection process during the pea-Rhizobium leguminosarum interaction. Cell 60, 281–294 (1990a)Google Scholar
  72. Scheres, B.; van Engelen, F.; van der Knaap, E.; van de Weil, C; van Kammen, A.; Bisseling, T.: Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2, 687–700 (1990b)Google Scholar
  73. Shizhen, H.; Dongwei, J.: Induction of nodulation on the roots of the non-legume rice. In: Yanfu, N.; Kennedy, I. R.; Tingwei, C. (eds.), Biological Nitrogen Fixation — Novel Associations With Non-Legume Crops, 45–52. Qingdao Ocean University Press, Qingdao, China 1994.Google Scholar
  74. Spaink, H. P.; Sheeley, D. M.; van Brussel, A. A. N.; Glushka, J.; York, W. S.; Tak, T.; Geiger, O.; Kennedy, E. P.; Reinhold, V. N.; Lugtenberg, B. J. J.: A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity ofRhizobium. Nature 354, 125–130 (1991)Google Scholar
  75. Staub, J. M.; Maliga, P.: Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4, 39–45 (1992)Google Scholar
  76. Suzuki, J. Y.; Bauer, C. E.; Light independent chlorophyll biosynthesis: Involvement of the chloroplast genechlL (frxC). Plant Cell 4, 929–940 (1992)Google Scholar
  77. Terouchi, N.; Syono, K.:Rhizobium attachment and curling in asparagus, rice and oat plants. Plant Cell Physiol. 31, 119–127 (1990)Google Scholar
  78. Thornely, R. N. F.; Ashby, G. A.: Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates ofAzotobacter species and facilitate nitrogen fixation in other aerobic environments. Biochem. J. 261, 181–187 (1989)Google Scholar
  79. Trinick, M. J.: Symbiosis betweenRhizobium and non-legume,Trema aspera. Nature 244, 459–460 (1973)Google Scholar
  80. Trinick, M. J.; Structure of nitrogen-fixing nodules byRhizobium on roots ofParasponia andersonii Planch. Can. J. Microbiol. 25, 565–578 (1979)Google Scholar
  81. Vance, C. P.: Symbiotic nitrogen fixation: Recent genetic advances. In: Stumpf, P. K.; Conn, E. E. (eds.), The Biochemistry of Plants: A Comprehensive Treatise, 43–88. Academic Press, New York 1990.Google Scholar
  82. Vijn, I.; das Neves, L.; van Kammen, A.; Franssen, H.; Bisseling, T.: Nod factors and nodulation in plants. Science 260, 1764–1765 (1993)Google Scholar
  83. Vose, P. B.: Developments in nonlegume N2-fixing systems. Can. J. Microbiol. 29, 837–850 (1993)Google Scholar
  84. Watanabe, I.; Liu, C. C.: Improving nitrogen-fixing systems and integrating them to sustainable rice farming. Plant Soil 141, 57–67 (1992)Google Scholar
  85. Watanabe, I.; Roger, P. A.: Nitrogen fixation in wetland rice fields. In: Subba Rao, N. S. (ed.), Current Developments In Biological Nitrogen Fixation, 237–276. Oxford-IBM Publications, New Delhi 1984.Google Scholar
  86. Whitfeld, P. R.; Bottomley, W.: Organization and structure of chloroplast genes. Ann. Rev. Plant Physiol. 34, 297–310 (1983)Google Scholar
  87. Wu, P.; Zhang, G.; Ladha, J. K.; McCouch, S.; Huang, N.: Restriction fragment length polymorphic markers associated with rice varietal ability to stimulate N2 fixation in rhizosphere. Rice Genetic Newsletter (1994) (submitted)Google Scholar
  88. You, C. B.; Song, W.: Establishment of an effective nitrogen-fixing association between rice (Oryza sativa L.) and diazotrophAlcaligenes sp. In: Yanfu, N.; Kennedy, I. R.; Tingwei, C. (eds.), Biological Nitrogen Fixation — Novel Associations With Non-legume Crops, 7–27. Qingdao Ocean University Press, Qingdao, China 1994.Google Scholar
  89. You, C. B.; Zhou, F. Y.: Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can. J. Microbiol. 35, 403–408 (1989)Google Scholar
  90. Zhiguo, M.; Zhigang, L.; Qingyuan, X.: On rice's induced nodulation and transfer of the nodule bacterium into the plant. In: Yanfu, N.; Kennedy, I. R.; Tingwei, C. (eds.), Biological Nitrogen Fixation — Novel Associations With Non-legume Crops, 53–58. Qingdao Ocean University Press, Qingdao, China 1994.Google Scholar
  91. Zhou, F. Y.; You, C. B.: Interaction between diazotrophic bacteriaAlcaligenes faecalis and host plant rice. Scientia Agricultura Sinica 21(3), 7–13 (1988)Google Scholar
  92. Zhu Zhao-liang; Liu Chong-qun; Jiang Bai-fan: Mineralization of organic nitrogen, phosphorus and sulfur in some paddy soils of China. In: Organic Matter and Rice, 259–272. International Rice Research Institute, Philippines 1984.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Ladha J. K. 
    • 1
  • Reddy P. M. 
    • 1
  1. 1.Soil and Water Sciences DivisionInternational Rice Research InstituteManilaPhilippines

Personalised recommendations