Advertisement

GeoJournal

, Volume 35, Issue 3, pp 351–362 | Cite as

Reducing global warming — The role of rice

  • Neue Heinz-Ulrich 
  • Ziska Lewis H. 
  • Matthews Robin B. 
  • Dai Qiujie 
Article

Abstract

Activities to provide energy for an expanding population are increasingly disrupting and changing the concentration of atmospheric gases that increase global temperature. Increased CO2 and temperature have a clear effect on growth and production of rice as they are key factors in photosynthesis. Rice yields could be increased with increased levels of CO2, however, the rise of CO2 may be accompanied by an increase in global temperature. The effect of doubling CO2 levels on rice production was predicted using rice crop models. They showed different effects of climate change in different countries. A simulation of the Southeast Asian region indicated that a doubling of CO2 increases yield, whereas an increase in temperature decreases yield.

Enhanced UV-B radiation resulting for stratographic ozone depletion has been demonstrated to significantly reduce plant height, leaf area and dry weight of two rice cultivars under glasshouse conditions. Data are still insufficient, however, for conclusive results on the effect of UV-B radiation on rice growth under field conditions.

Rice production itself has a significant effect on global warming and atmospheric chemistry through methane emission from flooded ricefields. Water regime, soil properties and the rice plant are major factors controlling the flux of methane in ricefields. Global and regional estimates of methane emission rates are still highly uncertain and tentative. Integration of mechanistic modeling of methane fluxes with geographic information systems of factors controlling these processes are required to improve estimates and predictions.

Keywords

Ozone Global Warming Rice Cultivar Methane Emission Rice Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, C. N.: Studies on the anaerobic decomposition of plant materials. II. Some factors influencing the anaerobic decomposition. Biochem. J. 29:953–960 (1935)Google Scholar
  2. Baker, J. T.; Allen Jr., L. H.; Boote, K. J.; Jones, P.; Jones, J. W.: Rice photosynthesis and evapotranspiration in sub ambient, ambient and super ambient carbon dioxide concentrations. Agron. J. 82:834–840 (1990a)Google Scholar
  3. Baker, J. T.; Allen Jr., L. H.; Boote, K. J.: Growth and yield response of rice to carbon dioxide concentration. J. Agricultural Science 115:313–320 (1990b)Google Scholar
  4. Baker, J. T.; Allen Jr., L. H.; Boote, K. J.: Temperature effects on rice at elevated CO2 concentration. J. of Experimental Botany 43:959–964 (1992)Google Scholar
  5. Balderston, W. L.; Payne, W. J.: Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Appl. Environ. Microbiol. 32:264–269 (1976)Google Scholar
  6. Barnes, P. W.; Maggard, S.; Holman, M. S.; Vergara, B. S.: Intraspecific variation in sensitivity to UV-B radiation in rice. Crop Sci. 33:1041–1046 (1993)Google Scholar
  7. Bouwman, A. F.: Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouman, A. F.: (ed.), Soils and the Greenhouse Effect, pp. 61–127. John Wiley, New York 1990.Google Scholar
  8. Butterbach-Bahl, K.: Mechanismen der Produktion und Emission von Methan in Reisfeldern: Abhängigkeit von Felddüngung und angebauter Varietät. Diss. Techn. Univ. München. Schriftenreihe des Fraunhofer Instituts für Atmospherische Umweltforschung Bd. 14. Wiss. Verl. Mauraun, Frankfurt/M 1992.Google Scholar
  9. Cicerone, R. J.; Shetter, J. D.: Sources of chemospheric methane: Measurements in rice paddies and a discussion. J. Geophys. Res. 86:7203–7209 (1981)Google Scholar
  10. Conrad, R.; Rothfuss, F.: Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fert. Soils 12:28–32 (1991)Google Scholar
  11. Dai, Q.; Coronel, V.; Vergara, B.; Barnes, P.; Quintos, A.: Ultraviolet-B ration effects on growth and physiology of four rice cultivars. Crop Sci. 32:1269–1274 (1992)Google Scholar
  12. Dai, Q.; Peng, S.; Chavez, A. Q.; Vergara, B. S.: Intraspecific response of 188 rice cultivars to enhanced UV-B radiation. Environmental and Experimental Botany (1994a) (in press)Google Scholar
  13. Dai, Q.; Peng, S.; Chavez, A. Q.; Vergara, B. S.: Growth and production of rice in response to enhanced UV-B radiation under glasshouse and field condition. Paper presented at International Symposium “Climate Change and Rice” at International Rice Research Institute, Los Baños, Laguna, Philippines, 14–18 March 1994 (1994b)Google Scholar
  14. De Laune, R. D.; Smith, E. J.; Patrick, W. H.: Methane release from Gulf Coast wetlands. Tellus 35B:8–15 (1983)Google Scholar
  15. Denier van der Gon, H. A. C.; Neue, H. U.; Lantin, R. S.; Wassmann, R.; Alberto, M. C. R.; Aduna, J. B.; Tan, M. J. P.: Controlling factors of methane emission from rice fields. In: Batjes, N. H.; Bridges, E. M.: (eds.), World Inventory of Soil Emission Potentials, pp. 81–92. WISE Report 2, ISRIC, Wageningen, The Netherlands 1992.Google Scholar
  16. Frenzel, P.; Rothfuss, F.; Conrad, R.: Oxygen profiles and methane turnover in a flooded microcosm. Biol. Fertil. Soils 14:84–89 (1992)Google Scholar
  17. Gammon, R. H.; Sundquist, E. T.; Fraser, P. J.: Atmospheric carbon dioxide and the global carboncycle. US-DOE/ER-0237, National Technical Information Service, Washington, DC 1985.Google Scholar
  18. Garcia, J. L.; Raimbault, M.; Jacq, V.; Rinaudo, G.; Roger, P.: Activities microbiennes dans les sols de rizieres du senegal: relations avec les proprietes physicochimiques et influence de la rhizosphere. Rev. Ecol. Biol. 11(2):169–185 (1974)Google Scholar
  19. He, J.; Huang, L. K.; Chow, W. S.; Whitecross, M. I.; Anderson, J. M.: Effects of supplemental ultraviolet-b radiation on rice and pea plants. Aust. J. Plant Physiol. 20:129–142 (1993)Google Scholar
  20. Holzapfel-Pschorn, A.; Conrad, R.; Seiler, W.: Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92:223–233 (1986)Google Scholar
  21. Holzapfel-Pschorn, A.; Conrad, R.; Seiler, W.: Production oxidation and emission of methane in rice paddies. FEMS Microbiol. Ecol. 31:343–351 (1985)Google Scholar
  22. Inubushi, K.; Watanabe, I.: Microbial biomass nitrogen in anaerobic soil as affected by N-immobilization and N2-fixation. Soil Sci. Plant Nutr. 33(2), 213–224 (1987)Google Scholar
  23. IPCC: Climate Change. The supplementary report to the IPCC scientific assessment. Houghton, J. T.; Callender, B. A.; Varney, S. K. (eds.), Intergovernmental Panel on Climate Change Cambridge University Press, United Kingdom 1992.Google Scholar
  24. Kanda, K.; Tsuruta, H.; Minami, K.: Emission of dimethyl sulfide, carbonyl sulfide, and carbon disulfide from paddy fields. Plant Nutr. 38(4):709–716 (1992)Google Scholar
  25. Keeling, C. D.; Bacstow, R. B.; Carter, A. F.; Piper, S. C.; Whorf, T. P.; Heimann, M.; Mook, W. G.; Roeloffsen, H.: A 3-dimensional model of CO2 based on observed winds. Am. Geophys. Union Monogr. 55:165–234 (1989)Google Scholar
  26. Kerr, R. A.: Greenhouse warming still coming. Science 232:573–575 (1986)Google Scholar
  27. Khalil, M. A. K.; Rasmussen, R. A.: Atmospheric methane: trends over the last 10000 years. Atmos. Environ. 21(11):2445–2452 (1987)Google Scholar
  28. Khalil, M. A. K.; Rasmussen, R. A.: Climate induced feedback for the global cycles of methane and nitrous oxide. Tellus 41B:554–559 (1989)Google Scholar
  29. Khalil, M. A. K.; Rasmussen, R. A.: Constraints on the global sources of methane and an analyses of recent budgets. Tellus 428:229–236 (1990)Google Scholar
  30. Kimura, M.: Methane emission from paddy soils in Japan and Thailand. In: Batjes, N. M.; Bridges, E. M. (eds.), World Inventory of Soil Emission Potentials, pp. 43–79. WISE Report 2, ISRIC, Wageningen, The Netherlands 1992.Google Scholar
  31. Lindau, C. W.; Bollich, P. K.; DeLaune, R. D.; Patrick Jr, W. H.; Law, V. J.: Effect of urea fertilizer and environmental factors on methane emissions from a Louisiana, USA rice field. Plant and Soil 136:195–203 (1991)Google Scholar
  32. Lindau, C. W.; Bollich, P. K.; Delaune, R. D.; Moisier, A. R.; Bronson, K. F.: Methane mitigation in flooded Louisiana rice fields. Biol. Fert. Soils 15:174–178 (1993)Google Scholar
  33. Manning, M. R.; Lowe, D. C.; Melhuish, W.; Spaarks, R.; Wallace, G.; Brenninkmeijer, C. A. M.; McGill, R. C.: The use of radiocarbon measurements in atmospheric studies. Radiocarbons 32:37–58 (1990)Google Scholar
  34. Mariko, S.; Harazono, Y.; Owa, N.; Nouchi, I.: Methane in flooded soil, water and the emission through rice plants to the atmosphere. Environm. Experim. Botany 31:343–350 (1991)Google Scholar
  35. Matthews, R. B.; Kropff, M. J.; Bachelet, D.: Climate change and rice production in Asia. In: Entwicklung und Ländlicher Raum, pp. 16–19. Germany January 1994a.Google Scholar
  36. Matthews, R. B.; Kropff, M. J.; Bachelet, D.; Horie, T.; Lee, M. H.; Centeno, H. G.; Shin, J. C.; Mohandass, S.; Singh, S.; Defeng, Z.: Modeling the impact of climate change on rice production in east and southeast Asia. In: Proceedings of the International Symposium on Climate Change and Rice, pp 14–18. International Rice Research Institute, P.O. Box 933, Manila, Philippines 1994b.Google Scholar
  37. McBride, B. C.; Wolfe, R. S.: Inhibition of methanogenesis by DDT. Nature 234:551 (1971)Google Scholar
  38. Neue, H. U.; Scharpenseel, H. W.: Gaseous products of the decomposition of organic matter in submerged soils. In: Organic Matter and Rice, pp. 311–328. International Rice Research Institute, P.O. Box 933, Manila, Philippines 1994.Google Scholar
  39. Neue, H. U.: Holistic view of chemistry of flooded soil. In: Soil Management for Sustainable Rice Production in the Tropics, pp. 5–32. International Board for Soil Research and Management. IBSRAM Monograph no 2. Bangkok 1991.Google Scholar
  40. Neue, H. U.: Agronomic practices affecting methane fluxes from rice cultivation. Ecol. Bull. 42:174–182 (1992)Google Scholar
  41. Neue, H. U.; Roger, P. A.: Rice agriculture: factors controlling emission. In: Khali, M. A. K.; Shearer, M. (eds.), Global Atmospheric Methane. NATO ASI/ARW series 1993 (in press)Google Scholar
  42. Neue, H. U.; Lantin, R. S.; Wassmann, R.; Aduna, J. B.; Alberto, M. C. R.; Andales, M. J. F.: Methane emission from rice soils of the Philippines. In: Minami, K.; Mosier, A.; Sass, R. (eds.), Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, pp. 55–63. NIAES, Japan (1994) (in press)Google Scholar
  43. Nouchi, I.; Kobayashi, K.; Hosono, T.: Effects of ultraviolet-b radiation on growth of rice plants in the fields. In: Proceedings of the 15th International Botanical Congress. Yokohama, Japan 1993.Google Scholar
  44. Oremland, R. S.; Capone, D. G.: Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microbiol. Ecol. 10:285–383 (1988)Google Scholar
  45. Parashar, D.; Rai, C. J.; Gupta, P. K.; Singh, N.: Parameters affecting methane emission from paddy fields. Indian J. Radio Space Physics 20:12–17 (1990)Google Scholar
  46. Patrick Jr. W. H.; Reddy, C. N.: Chemical changes in rice soils. In: Soils and Rice, pp. 361–380. International Rice Research Institute, PO Box 933, Manila, Philippines 1978.Google Scholar
  47. Ponnamperuma, F. N.: The chemistry of submerged soils. Adv. Agron. 24:29–96 (1972)Google Scholar
  48. Quay, P. D.; King, S. L.; Stutsman, J.; Wilbur, D. O.; Steele, L. P.; Fung, I.; Gammon, R. H.; Brown, T. A.; Farewell, G. W.; Grootes, P. M.; Schmidt, F. H.: Carbon isotopic composition of atmospheric methane: Fossil and biomass burning strength. Global Biogeochem. Cycles 5:25–47 (1991)Google Scholar
  49. Raimbault, M.; Rinaudo, G.; Garcia, J. L.; Boureau, M.: A device to study metabolic gases in the rice rhizosphere. Biol. Biochem. 9:193–196 (1977)Google Scholar
  50. Raimbault, M.: Étude de l'influence inhibitrice de l'acétylene sur la formation biologique du méthane dans un sol de riziére. Ann. Microbiol. (Inst. Pasteur) 126a:217–258 (1975)Google Scholar
  51. Roger, P. A.; Grant, I. F.; Reddy, P. N.; Watanabe, I.: The photosynthetic aquatic biomass in wetland rice fields and its effect on nitrogen dynamics. In: Efficiency of N Fertilizers for Rice, pp. 43–68. International Rice Research Institute, PO Box 933, Manila, Philippines 1987.Google Scholar
  52. Salvas, P. L.; Taylor, B. F.: Blockage of methanogenesis in marine sediments by the nitrification inhibitor 2-chloro-6-(trichloromethyl) pyridine (Nitrapin or N-serve) Curr. Microbiol. 4:305 (1980)Google Scholar
  53. Sass, R. L.; Fisher, F. M.; Harcombe, P. A.; Turner, F. T.: Methane production and emission in a Texas rice field. Global Biogeochem. Cycles 4(1):47–68 (1990)Google Scholar
  54. Sass, R. L.; Fisher, F. M.; Wang, Y. B.; Turner, F. T.; Jund, M. F.: Methane emission from rice fields: the effect of floodwater management. Global Biogeochem. Cycles 6(3):249–262 (1992)Google Scholar
  55. Schütz, H.; Holzapfel-Pschorn, A.; Conrad, R.; Rennenberg, H.; Seiler, W.: A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J. Geophys. Res. 94:16405–16416 (1989)Google Scholar
  56. Seiler, W.: Contribution of biological processes to the global budget of methane in the atmosphere. In: Kleig, M. J.; Reddy, C. A. (eds.), Current Perspectives in Microbial Ecology, pp. 468–477. American Society of Microbiology, Washington DC 1984.Google Scholar
  57. Steele, L. P.; Dlugokencky, E.; Lang, P.; Tans, P.; Martin, R.; Masarie, K.: Slowing down of the global accumulation of atmospheric CH4 during the 1980s. Nature 358:13–316 (1992)Google Scholar
  58. Takai, Y.; Koyama, T.; Kamura, T.: Microbial metabolism in reduction process of paddy soil. Part I. Soil Plant Food 2(2):63–66 (1956)Google Scholar
  59. Takai, Y.: The mechanism of methane fermentation in flooded soils. Soil Sci. Plant Nutr. 16:238 (1970)Google Scholar
  60. Teramura, A. H.; Ziska, L. H.; Sztein, A. E.: Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol. Plant. 83:373–380 (1991)Google Scholar
  61. US-EPA: Greenhouse gas emissions from agriculture. Vol. 1. Office of Policy Analysis, United States Environmental Protection Agency, Washington DC 1990.Google Scholar
  62. Wagatsuma, T.; Nakashima, T.; Tawaraya, K.; Watanabe, S.; Kamio, A.; Ueki, A.: Role of plant aerenchyma in wet tolerance and methane emission from plants. In: van Beusichem, M. L. (ed.), Plant Nutrition — Plant Physiology and Application, pp. 455–461. Kluwer Academic Publishers, The Netherlands 1990.Google Scholar
  63. Wahlen, M.; Takata, N.; Henry, R.; Deck, B.; Zeglen, J.; Vogel, J. S.; Southon, J.; Shemesh, A.; Fairbanks, R.; Broecker, W.: Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. Science 245:286–290 (1989)Google Scholar
  64. Wang, Z. P.; Lindau, C. W.; Delaune, R. D.; Patrick Jr, W. H.: Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. Fertilizer Research 33:115–121 (1992)Google Scholar
  65. Wang, Z. P.; Delaune, R. D.; Masscheleyn, P. H.; Patrick Jr, W. H.: Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 57:382–385 (1993)Google Scholar
  66. Ward, D. M.; Winfrey, M. R.: Interactions between methanogenic and sulfate-reducing bacteria in sediments. Adv. Aquatic Microbiol. 3:141–179 (1985)Google Scholar
  67. Watson, R. T.; Radha, H.; Oeschger, H.; Siegenthabe, U.: Greenhouse gases and aerosols. In: Houghton J.T. (ed.), Climate Change: The IPCC Scientific Assessment. Cambridge University Press, United Kingdom 1990.Google Scholar
  68. Yagi, K.; Minami, K.: Effects of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36:599–610 (1990)Google Scholar
  69. Yoshida, S.: Fundamentals of Rice Crop Science. International Rice Research Institute, PO Box 933, Manila, Philippines 1981.Google Scholar
  70. Yu, T.: Physical Chemistry of Paddy Soils. Springer-Verlag, Berlin 1985.Google Scholar
  71. Ziska, L. H.; Teramura, A. H.: Intraspecific variation in the response of rice(Oryza sativa) to increased CO2: photosynthetic, biomass and reproductive characteristics. Physiologia Plantarum 84:269–276 (1992)Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Neue Heinz-Ulrich 
    • 1
  • Ziska Lewis H. 
    • 1
  • Matthews Robin B. 
    • 1
  • Dai Qiujie 
    • 1
  1. 1.International Rice Research InstituteManilaPhilippines

Personalised recommendations