Advertisement

GeoJournal

, Volume 35, Issue 3, pp 333–335 | Cite as

Biotechnology and the future of rice production

  • Bennett J. 
Article

Abstract

Rice breeders are looking to basic bioscience and biotechnology for help in the solution of important problems that conventional breeding methods have not satisfactorily solved. Among these problems are durable resistance to recalcitrant pests and diseases such as yellow stem borer, gall midge, sheath blight, bacterial leaf blight, blast and tungro virus, and tolerance of abiotic stresses such as drought, salinity and submergence. Nutrient use efficiency, yield potential and efficient hybrid rice production are additional problems for which biotechnology solutions are envisioned. IRRI's biotechnology program emphasizes techniques such as molecular markers, anther culture and DNA fingerprinting that accelerate conventional breeding, and also techniques such as wide hybridization and genetic engineering that broaden the gene pool that breeders can exploit. IRRI's experience in adopting and adapting biotechnology for use in its own breeding program is shared with the national agricultural research systems of Asia through the Asian Rice Biotechnology Network.

Keywords

Rice Production Anther Culture Conventional Breeding Hybrid Rice Sheath Blight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amante, A. D.; Sitch L. A.; Nelson, R.; Dalmacio, R. D.; Oliva, N. P.; Aswidinoor, H.; Leung H.: Transfer of bacterial blight and blast resistance from the tetraploid wild riceOryza minuta to cultivated rice,Oryza sativa. Theor. Appl. Genet. 84;345–354 (1992)Google Scholar
  2. Bonman, J. M.; Khush, G. S.; Nelson, R. J.: Breeding rice for resistance to pests. Annu. Rev. Phytopathol. 30;307–328 (1992)Google Scholar
  3. Champoux, M. C.; Wang, G. L.; Sarkarung, S.; Mackill, D. J.; O'Toole, J. C.; Huang, N.; McCouch, S. R.: Locating genes associated with root morphology and drought avoidance via linkage to molecular markers. Theor. Appl. Genet. (in press)Google Scholar
  4. Fujimoto, H.; Itoh, K.; Yamamoto, M.; Kyozuka, J.; Shimamoto, K: Insect resistant rice generated by introduction of a modified δ-endotoxin gene ofBacillus thuringiensis. Biotechnology 11;1151–1155 (1993)Google Scholar
  5. Ishii, T.; Brar, D. S.; Multani, D. S.; Khush, G. S: Molecular tagging of genes for brown planthopper resistance and earliness introgressed fromOryza australiensis into cultivated rice,O. sativa. Genome 37;217–221 (1994)Google Scholar
  6. Jena, K. K.; Khush, G. S.: Introgression of genes fromOryza officinalis Well ex Watt to cultivated rice,O. sativa L. Theor. Appl. Genet. 80, 737–745 (1990)Google Scholar
  7. Katiyar, S. K.; Tan, Y.; Zhang, Y.; Huang, B.; Xu, Y.; Zhao, L.; Huang, N.; Khush, G. S.; Bennett, J.: Identification of RAPD markers linked to the gene controlling the gall midge resistance against all biotypes in China. Rice Genet. Newslett. (in press)Google Scholar
  8. Khush, G. S.: Disease and insect resistance in rice. Adv. Agron. 29, 265–341 (1977)Google Scholar
  9. Khush, G. S.: Multiple disease and insect resistance for increased yield stability in rice. In: Progress in irrigated rice research. International Rice Research Institute, Manila, Philippines 79–92, 1989.Google Scholar
  10. Khush, G. S.: Breaking the Yield Frontier of Rice. GeoJournal 35.3, 331–334 (1995)Google Scholar
  11. Khush, G. S.; Brar, D. S.: Overcoming barriers in hybridization. Distant hybridization of crop plants. Theor. Appl. Genet. (Monogr.) 16:47–61 (1992)Google Scholar
  12. Ladha, J. K.; Reddy, P. M.: Extension of Nitrogen Fixation to Rice — Necessity and Possibilities. GeoJournal 35.3, 365–374 (1995)Google Scholar
  13. Multani, D. S.; Jena, K. K.; Brar, D. S.; de los Reyes, B. G.; Angeles, E. R.; Khush, G. S.: Development of monosomic alien addition lines and introgression of genes fromOryza australiensis Domin. to cultivated riceO. sativa L. Theor. Appl. Genet. (in press) (1994)Google Scholar
  14. Tarczynski, M. C.; Jensen, R. G.; Bohnert, H. J.: Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508–510 (1993)Google Scholar
  15. Wang, G. L.; Mackill, D. J.; Bonman, J. M.; McCouch, S. R.; Champoux, M. C.; Nelson, R. J.: RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136: 1421–1434 (1994)Google Scholar
  16. Zapata, F. J.; Akbar, M.; Senadhira, D.; Seshu, D. V.: Salt tolerance of anther culture derived rice lines. Int. Rice Res. Newslett. 14: 6–7 (1989)Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Bennett J. 
    • 1
  1. 1.International Rice Research InstituteManilaPhilippines

Personalised recommendations