Skip to main content
Log in

Some properties of human and bovine brain cathepsin B

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cathespin B has been purified 750-fold to apparent homogeneity from human and bovine brain cortex using ammonium sulfate fractionation (30–70%), chromatography on Sephadex G-100, CM-Sephadex C-50, and concanavalin A-Sepharose. Enzyme was assayed fluorometrically at pH 4.0 with pyridoxyl-hemoglobin in the presence of 1 mM DTT and 1 mM EDTA. Properties of the enzyme from the two sources proved to be similar. On disc PAGE the purified preparation produced two bands associated with proteinase activity that are due to existence of two multiple forms of brain cathepsin B with pI 6.1 and 6.8. The enzyme is completely inactivated by thiol-blocking reagents, leupeptin, E-64, and demands thiol compounds for its ultimate activity. Z-Phe-Ala-CHN2 is a potent inhibitor of the enzyme (K 2nd=1280 M−1s−1) in contrast to Z-Phe-Phe-CHN2 (K 2nd=264 M−1s−1). pH optimum in the reaction of hydrolysis of Pxy-Hb is 4.0–6.0,K M(app.) =10−5 M. Cathepsin B splits azocasein: pH optimum 5.0–6.0,K M(app.)=2.2·10−5 M, but inclusion of urea in the incubation medium depresses the azocaseinolytic activity of the enzyme 1.5-fold. It does not split Lys-NNap, Arg-NMec and is not inhibited by bestatin. The specific activity of brain cathepsin B with Z-Arg-Arg-NNapOMe at pH 6.0 is 10-fold higher than with Bz-Arg-NNap, Z-Gly-Gly-Arg-NNap is a poor substrate. With Z-Arg-Arg-NMec and Bz-Phe-Val-Arg-NMec the specific acitivity is 80 and 35%, respectively of that with Z-Phe-Arg-NMec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Pxy-Hb:

pyridoxyl-hemoglobin

LMW:

low molecular weight

HMW:

high molecular weight

BSA:

bovine serum albumin

SDS:

sodium dodecyl sulfate

PAGE:

polyacrylamide gel electrophoresis

DFP:

diisopropyl-fluorophosphate

DTT:

dithiothreitol

Bz:

benzoyl

Z:

benzyloxycarbonyl

-NMec:

7-(4-methyl)coumarylamide

-NNap:

2-naphthylamide

-NNapOme:

2-(4-methoxy)naphthylamide

CHN2 :

diazomethane

E-64:

1,3-carboxy-trans-2,3-epoxypropyl-L-leucyl-amido(4-guanidino)buthane

Boc:

t-butoxycarbonyl

N-EM:

N-ethylmaleimide

References

  1. Barrett, A. J. 1977. Cathepsin B and other thiol proteinases. Pages 181–208,in Barrett, A. J. (ed.), Proteinases in mammalian cells and tissues, North-Holland, Amsterdam.

    Google Scholar 

  2. Dean, R. T. 1975. Lysosomal enzymes as agents of turnover of soluble cytoplasmic proteins. Eur. J. Biochem. 58:9–14.

    Google Scholar 

  3. Lazure, C., Seidah, N. G., Pelaprat, D., andChretien, M. 1983. Proteases and posttranslational processing of prohormones: a review. Canad. J. Biochem. and Cell Biol. 61:501–515.

    Google Scholar 

  4. Loh, Y. P. 1984. Proteolysis in neuropeptide processing and other neural functions. Ann. Rev. Neurosci. 7:189–222.

    Google Scholar 

  5. Puri, R. B., Amjaneyulu, K., Kidwai, J. R., andRao, V. K. M. 1978. In vitro conversion of proinsulin to insulin by cathepsin B and role of C-peptide. Acta Diabetol. 15:243–248.

    Google Scholar 

  6. MacGregor, R. R., Hamilton, J. W., Kent, G. N., Shofstall, R. E., andCohen, D. V. 1979. Isolation and characteristics of porcine parathyroid cathepsin B. J. Biol. Chem. 254:4428–4433.

    Google Scholar 

  7. Quinn, P. S., andJudah, J. D. 1978. Calcium-dependent Golgi-vesicle fusion and cathepsin B in the conversion of proalbumin into albumin in rat liver. Biochem. J. 173:301–309.

    Google Scholar 

  8. Recklies, A. D., andPoole, A. R. 1982. Proteolytic mechanism of tissue destruction in tumour growth and metastasis. Pages 77–95,in Weiss, L., Gilbert, H. A. (eds.), Liver Metastasis, G. K. Hall Medical Publishers, Boston, Massachusetts.

    Google Scholar 

  9. Bayliss, M. T., andAli, S. Y. 1978. Studies on cathepsin B in human articular cartilage. Biochem. J. 171:149–154.

    Google Scholar 

  10. Barrett, A. J., andMcDonald, J. K. 1980. Pages 267–275,in Mammalian Proteinases: A Glossary and Bibliography, Academic Press, London, New-York.

    Google Scholar 

  11. Barrett, A. J. 1973. Human cathepsin BI. Purification and some properties of the enzyme. Biochem. J. 131:809–822.

    Google Scholar 

  12. Knight, C. G. 1980. Human cathepsin B. Biochem. J. 189:447–453.

    Google Scholar 

  13. Evans, P., andEtherington, D. J. 1978. Characterization of cathepsin B and collagenolytic cathepsin from human placenta. Eur. J. Biochem. 83:87–97.

    Google Scholar 

  14. Gounaris, A. D., andSlater, E. 1982. Human renal cortex cathepsin B. Biochem. J. 205:295–302.

    Google Scholar 

  15. Azaryan, A. V., Akopyan, T. N., andBuniatian, H. Ch. 1983. Cathepsin D from human brain. Purification and multiple forms. Biomed. Biochim. Acta 42:1237–1246.

    Google Scholar 

  16. Barrett, A. J., andKirschke, H. 1981. Cathepsin B, cathepsin H and cathepsin L. Methods Enzymol. 80:535–561.

    Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  18. Andrews, P. 1965. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96:595–606.

    Google Scholar 

  19. Davis, B. J. 1964. Disc Electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121:404–427.

    Google Scholar 

  20. Barrett, A. J., Brown, M. A., andSayers, C. A. 1979. The electrophoretically “slow” and “fast” forms of the α2-molecule. Biochem. J. 181:401–418.

    Google Scholar 

  21. DeMartino, G. N., Doebber, T. W., andMiller, L. L. 1977. Pepstatin-insensitive proteolytic activity of rat liver lysosomes. J. Biol. Chem. 252:7511–7516.

    Google Scholar 

  22. Kirschke, H., Kembhavi, A., Bohley, P. andBarrett, A. J. 1982. Action of rat liver cathepsin L on collagen and other substrates. Biochem. J. 201:367–372.

    Google Scholar 

  23. Kirschke, H., Langner, J., Wiederanders, B., Ansorge, S., andBohley, P. 1977. Cathepsin L. A new proteinase from rat liver lysosomes. Eur. J. Biochem. 74:293–301.

    Google Scholar 

  24. McDonald, J. K., andEllis, S. 1975. On the substrate specificity of cathepsin B1 and B2 including a new fluorogenic substrate for cathepsin B1. Life Sci. 17:1269–1276.

    Google Scholar 

  25. Kirschke, H., Locnikar, P., andTurk, V. 1984. Species variations amongst lysosomal cysteine proteinases. FEBS Lett. 174:123–127.

    Google Scholar 

  26. Mason, R. W., Taylor, M., andEtherington, D. J. 1984. The purification and properties of cathepsin L from rabbit liver. Biochem. J. 217:209–217.

    Google Scholar 

  27. Green, G. D. J., andShaw, E. 1981. Specific inactivators of thiol proteinases. J. Biol. Chem. 251:4528–4536.

    Google Scholar 

  28. Kirschke, H., andShaw, E. 1981. Rapid inactivation of cathepsin L by Z-Phe-Phe-CHN2 and Z-Phe-Ala-CHN2. Biochem. Biophys. Res. Commun. 101:454–458.

    Google Scholar 

  29. Azaryan, A. V., Kirschke, H., Barkhudaryan, N., andGaloyan, A. 1984. Some properties of human and bovine cathepsin B. Pages 14–15,in Vizi, E. S. andMagyar, K. (eds.), Regulation of Transmitter Function: Basic and Clinical Aspects. Proceedings of the 5th Meeting of ESN, Akademiai Kiado, Budapest.

  30. Galoyan, A. A., Azaryan, A. V., andBarkhudaryan, H. A. 1984. About three proteinases from brain tissue, Pages 229–236,in Vizi, E. S. andMagyar, K. (eds.), Regulation of Transmitter Function: Basic and Clinical Aspects. Proceedings of the 5th Meeting of ESN, Akademiai Kiado, Budapest.

  31. Takahashi, K., Isemura, M., Ono, T., andIkenaka, T. 1980. Location of the essential thiol of porcine liver cathepsin B. J. Biochem. 87:347–350.

    Google Scholar 

  32. Takio, K., Towatari, T., Katunuma, N., andTitani, K. 1980. Primary structure study of rat liver cathepsin B. Biochem. Biophys. Res. Commun. 97:340–346.

    Google Scholar 

  33. Pohl, J., Badys, M., Tomasek, V., andKostka, V. 1982. Identification of the active site cysteine and of the disulfide bonds in the N-terminal part of the molecule of bovine spleen cathepsin B. FEBS Lett. 142:23–26.

    Google Scholar 

  34. Shaw, E., andKettner, C. 1981. The specificity of cathepsin B. Acta Biol. Med. Germ. 40:1503–1511.

    Google Scholar 

  35. Mort, J. S., Recklies, A. D., andPoole, A. R. 1980. Characterization of a thiol proteinase secreted by malignant human breast tumours. Biochim. Biophys. Acta 614:134–143.

    Google Scholar 

  36. Recklies, A. D., Mort, J. S., andPoole, A. R. 1982. Secretion of a thiol proteinase from mouse mammary carcinomas and its characterization. Cancer Res. 42:1026–1032.

    Google Scholar 

  37. Mort, J. S., Leduc, M. S., andRecklies, A. D. 1983. Characterization of a latent cysteine proteinase from ascitic fluid as a high molecular weight form of cathepsin B. Biochim. Biophys. Acta 755:369–375.

    Google Scholar 

  38. Suhar, A., andMarks, N. 1979. Purification and properties of brain cathepsin B. Eur. J. Biochem. 101:23–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special Issue dedicated to Dr. Eugene Kreps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azaryan, A., Barkhudaryan, N. & Galoyan, A. Some properties of human and bovine brain cathepsin B. Neurochem Res 10, 1511–1524 (1985). https://doi.org/10.1007/BF00988863

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988863

Keywords

Navigation