Measurement Techniques

, Volume 9, Issue 10, pp 1256–1260 | Cite as

Linear thermal expansion of monocrystalline quartz and aluminum oxide

  • A. N. Amatuni
  • E. B. Shevchenko


  1. 1.

    The temperature expansion coefficients were measured by the absolute method in directions parallel and perpendicular to the crystallographic axis in monocrystalline quartz in the range of 20–550‡C and in monocrystalline aluminum oxide in the range of 20–800‡C. The maximum error in determining the temperature expansion coefficients was ±5·10−8 deg−1.

  2. 2.

    Coefficients of the empirical formula (2) were evaluated for monocrystalline quartz and monocrystalline aluminum oxide. The data obtained by means of this formula is in good agreement with the measured values.

  3. 3.

    Monocrystalline quartz and aluminum oxide can be used for making specimens employed in checking relative dilatometers.


Preference should be given on monocrystalline aluminum oxide, since the expension curve of this material is smoother.


Oxide Aluminum Physical Chemistry Quartz Analytical Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. N. Koroleva, Interference dilatometer, Transactions of the Committee's Institutes, No. 71 (131), Standartgiz, Moscow (1963).Google Scholar
  2. 2.
    A. N. Amatuni, The VNIIM interference dilatometer DI-2, Transactions of the Committee's Institutes, No. 87 (147), Standartgiz, Moscow (1966).Google Scholar
  3. 3.
    H. Fizeau, Memoire sur la dilatation des corps solides par la chaleur, Ann. Chim. et Physique,8, 4 (1866).Google Scholar
  4. 4.
    J. R. Benoit, Nouvelles etudes et mesures de dilatations par la methode de M. Fizeau, Trav. et Mem. Bur. Internat. Poids et Mesures,6, 193 (1888).Google Scholar
  5. 5.
    K. F. Lindman, Om kvartsens termiska dilatation, Acta Soc. Scient. Fennicae,46, 5, 83 (1946).Google Scholar
  6. 6.
    K. Scheel, Ann. Physik,9, 837–853 (1902).Google Scholar
  7. 7.
    A. Perard, J. de Physique,6, 3, 257 (1922).Google Scholar
  8. 8.
    H. M. Randall, Physical Rev.,20, 1, 10–37 (1905).Google Scholar
  9. 9.
    A. Müller, Viertelj. Naturf. Ges. Zürich,61, 107–119 (1916).Google Scholar
  10. 10.
    J. B. Wachtman, T. G. Scuderi, and G. W. Cleek, Linear thermal expansion of aluminum oxide and thorium oxide from 100 to 1100‡K, J. Am. Ceram. Soc.,45, No. 7 (1962).Google Scholar
  11. 11.
    R. F. Geller and P. J. Yavorsky, Effects of some oxide additions on thermal-length changes of zirconia, J. Research Natl. Bur. Standards,35, 1, 87–110 (1945).Google Scholar

Copyright information

© Instrument Society of America 1967

Authors and Affiliations

  • A. N. Amatuni
  • E. B. Shevchenko

There are no affiliations available

Personalised recommendations