Skip to main content
Log in

RNase P as hyperprocessing enzyme: A model for formation of a biologically functional tRNA fragment

  • Special Issue: RNase MRP/RNase P Systems
  • RNase P
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hyperprocessing is defined as a further processing of mature RNA that produces another functional RNA. Hyperprocessing occurs inDrosophila cells. In the transposoncopia-related retrovirus-like particles ofDrosophila, a 39-nucleotide-long fragment from the 5′-region ofDrosophila initiator methionine tRNA is used as the primer forcopia minus-strand reverse transcription. This primer tRNA fragment is thought to be produced by cleavage within the mature tRNA sequence. We found that the catalytic RNA subunit of RNase P catalyzes this hyperprocessingin vitro and that this cleavage is dependent of the occurrence of an altered conformation of the tRNA substrate. In this review, I will summarize our work from the finding of the functional RNA fragment to the finding of a dynamic tRNA structure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HIV-1:

type 1 human immunodeficiency virus

kb:

kilobases

LTR:

long terminal repeat

PBS:

primer binding site

RVLPs:

retrovirus-like particles

tRNA Met i :

initiator methionine tRNA

References

  1. Abelson J (1979) Annu. Rev. Biochem. 48: 1035–1069

    Google Scholar 

  2. Kikuchi Y, Sasaki N & Ando-Yamagami Y (1990) Proc. Natl. Acad. Sci. USA 87: 8105–8109

    Google Scholar 

  3. Kikuchi Y & Sasaki N (1992) J. Biol. Chem. 267: 11972–11976

    Google Scholar 

  4. Kikuchi Y, Ando Y & Shiba T (1986) Nature 323: 824–826

    Google Scholar 

  5. Shiba T & Saigo K (1983) Nature 302: 119–124

    Google Scholar 

  6. Harada F, Peters GG & Dahlberg JE (1979) J. Biol. Chem. 254: 10979–10985

    Google Scholar 

  7. Varmus H & Swanstrom R (1982) In: Weiss R, Teich N, Varmus H & Coffin J (Eds) Molecular Biology of Tumor Viruses: RNA Tumor Viruses 2nd Ed (pp. 369–512). Cold Spring Harbor Lab, Cold Spring Harbor, NY

    Google Scholar 

  8. Voytas DF & Boeke JD (1993) Trends Genet. 9: 421–427

    Google Scholar 

  9. Kuroda K, Kagiyama-Takahashi R & Shinomiya T (1990) J. Biochem. 108: 926–933

    Google Scholar 

  10. Shinomiya T & Ina S (1991) Nucleic Acids Res. 14: 3935–3941

    Google Scholar 

  11. McClain WH, Guerrier-Takada C & Altman S (1987) Science 238: 527–530

    Google Scholar 

  12. Altman S (1989) Adv. Enzymol. Relat. Areas Mol. Biol. 62: 1–36

    Google Scholar 

  13. Flavell AJ & Brierley C (1986) Nucleic Acids Res. 14: 3659–3669

    Google Scholar 

  14. Khan R & Giedroc DP (1992) J. Biol. Chem. 267: 6689–6695

    Google Scholar 

  15. Litvak S, Sarih-Cottin L, Fournier M, Andreola M & Tarrago-Litvak L (1994) Trends Biochem. Sci. 19: 114–118

    Google Scholar 

  16. Götte M, Fackler S, Hermann T, Perola E, Cellai L, Gross HJ, Le Grice SFJ & Heumann H (1995) EMBO J. 14: 833–841

    Google Scholar 

  17. Maizels N & Weiner AM (1993) In: Gesteland RF & Atkins JF (Eds) The RNA World (pp. 557–602) Cold Spring Harbor Lab, Cold Spring Harbor, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, Y. RNase P as hyperprocessing enzyme: A model for formation of a biologically functional tRNA fragment. Mol Biol Rep 22, 171–175 (1995). https://doi.org/10.1007/BF00988724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988724

Key words

Navigation