Molecular Biology Reports

, Volume 22, Issue 2–3, pp 171–175 | Cite as

RNase P as hyperprocessing enzyme: A model for formation of a biologically functional tRNA fragment

  • Yo Kikuchi
Special Issue: RNase MRP/RNase P Systems RNase P


Hyperprocessing is defined as a further processing of mature RNA that produces another functional RNA. Hyperprocessing occurs inDrosophila cells. In the transposoncopia-related retrovirus-like particles ofDrosophila, a 39-nucleotide-long fragment from the 5′-region ofDrosophila initiator methionine tRNA is used as the primer forcopia minus-strand reverse transcription. This primer tRNA fragment is thought to be produced by cleavage within the mature tRNA sequence. We found that the catalytic RNA subunit of RNase P catalyzes this hyperprocessingin vitro and that this cleavage is dependent of the occurrence of an altered conformation of the tRNA substrate. In this review, I will summarize our work from the finding of the functional RNA fragment to the finding of a dynamic tRNA structure

Key words

Drosophila hyperprocessing primer retrotransposoncopia reverse transcription RNA processing 



type 1 human immunodeficiency virus




long terminal repeat


primer binding site


retrovirus-like particles


initiator methionine tRNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelson J (1979) Annu. Rev. Biochem. 48: 1035–1069Google Scholar
  2. 2.
    Kikuchi Y, Sasaki N & Ando-Yamagami Y (1990) Proc. Natl. Acad. Sci. USA 87: 8105–8109Google Scholar
  3. 3.
    Kikuchi Y & Sasaki N (1992) J. Biol. Chem. 267: 11972–11976Google Scholar
  4. 4.
    Kikuchi Y, Ando Y & Shiba T (1986) Nature 323: 824–826Google Scholar
  5. 5.
    Shiba T & Saigo K (1983) Nature 302: 119–124Google Scholar
  6. 6.
    Harada F, Peters GG & Dahlberg JE (1979) J. Biol. Chem. 254: 10979–10985Google Scholar
  7. 7.
    Varmus H & Swanstrom R (1982) In: Weiss R, Teich N, Varmus H & Coffin J (Eds) Molecular Biology of Tumor Viruses: RNA Tumor Viruses 2nd Ed (pp. 369–512). Cold Spring Harbor Lab, Cold Spring Harbor, NYGoogle Scholar
  8. 8.
    Voytas DF & Boeke JD (1993) Trends Genet. 9: 421–427Google Scholar
  9. 9.
    Kuroda K, Kagiyama-Takahashi R & Shinomiya T (1990) J. Biochem. 108: 926–933Google Scholar
  10. 10.
    Shinomiya T & Ina S (1991) Nucleic Acids Res. 14: 3935–3941Google Scholar
  11. 11.
    McClain WH, Guerrier-Takada C & Altman S (1987) Science 238: 527–530Google Scholar
  12. 12.
    Altman S (1989) Adv. Enzymol. Relat. Areas Mol. Biol. 62: 1–36Google Scholar
  13. 13.
    Flavell AJ & Brierley C (1986) Nucleic Acids Res. 14: 3659–3669Google Scholar
  14. 14.
    Khan R & Giedroc DP (1992) J. Biol. Chem. 267: 6689–6695Google Scholar
  15. 15.
    Litvak S, Sarih-Cottin L, Fournier M, Andreola M & Tarrago-Litvak L (1994) Trends Biochem. Sci. 19: 114–118Google Scholar
  16. 16.
    Götte M, Fackler S, Hermann T, Perola E, Cellai L, Gross HJ, Le Grice SFJ & Heumann H (1995) EMBO J. 14: 833–841Google Scholar
  17. 17.
    Maizels N & Weiner AM (1993) In: Gesteland RF & Atkins JF (Eds) The RNA World (pp. 557–602) Cold Spring Harbor Lab, Cold Spring Harbor, NYGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Yo Kikuchi
    • 1
  1. 1.Division of Bioscience and Biotechnology, Department of Ecological EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations