Skip to main content
Log in

The RNase P ofDictostyelium discoideum

  • Special Issue: RNase MRP/RNase P Systems
  • RNase P
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ribonuclease P (RNase P) is a key enzyme involved in tRNA biosynthesis. It catalyses the endonucleolytic cleavage of nearly all tRNA precursors to produce 5′-end matured tRNA. RNase P activity has been found in all organisms examined, from bacteria to mammals. Eubacterial RNase P RNA is the only known RNA enzyme which functionsin trans in nature. Similar behaviour has not been demonstrated in RNase P enzymes examined from archaebacteria or eukaryotes. Characterisation of RNase P enzymes from more diverse eukaryotic species, including the slime moldDictyostelium discoideum, is useful for comparative analysis of the structure and function of eukaryotic RNase P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RNase P:

ribonuclease P

MN:

micrococcal nuclease

References

  1. Altman S, Kirsebom L & Talbot S (1993) FASEB J. 7: 7–14

    Google Scholar 

  2. Darr SC, Brown JW & Pace NR (1992) Trends Biochem. Sci. 17: 178–182

    Google Scholar 

  3. Pace NR & Brown JW (1995) J. Bacteriol. 177: 1919–1928

    Google Scholar 

  4. Wang MJ, Davis NW & Gegenheimer P (1988) EMBO J. 7: 1567–1574.

    Google Scholar 

  5. Guerrier-Takada C, Gardiner K, Marsh T, Pace N & Altman S (1983) Cell 35: 849–857

    Google Scholar 

  6. Vioque A & Altman S (1986) Proc. Natl. Acad. Sci. USA 83: 5904–5908

    Google Scholar 

  7. Reich G, Olsen GJ, Pace B & Pace NR (1988) Science 239: 178–181

    Google Scholar 

  8. Frank DN, Harris ME & Pace NR (1994) Biochemistry 33: 10800–10808

    Google Scholar 

  9. Liu F & Altman S (1995) Genes & Dev. 9: 471–480

    Google Scholar 

  10. Altman S (1993) Proc. Natl. Acad. Sci. USA 90: 10898–10900

    Google Scholar 

  11. Rossi JJ (1994) Current Biology 4: 469–471

    Google Scholar 

  12. Hollingsworth MJ & Martin NC (1986) Mol. Cell Biol. 6: 1058–1064

    Google Scholar 

  13. Doersen CJ, Guerrier-Takada C, Altman S & Attardi G (1985) J. Biol. Chem. 260: 5942–5949

    Google Scholar 

  14. Manam S & Van Tuyle GC (1987) J. Biol. Chem. 262: 10272–10279.

    Google Scholar 

  15. Bartkiewicz M, Gold H & Altman S (1989) Genes & Dev. 3: 488–499

    Google Scholar 

  16. Doria M, Carrara G, Calandra P & Tocchini-Valentini GP (1991) Nucleic Acids Res. 19: 2315–2320

    Google Scholar 

  17. Lee JY & Engelke DR (1989) Mol. Cell Biol. 9: 2536–2543

    Google Scholar 

  18. Krupp G, Cherayil B, Frendewey D, Nishikawa S & Söll D (1986) EMBO J. 5: 1697–1703

    Google Scholar 

  19. Lygerou Z, Mitchell P, Petfalski E, Seraphin B & Tollervey D (1994) Genes & Dev. 8: 1423–1433

    Google Scholar 

  20. Morales MJ, Dang YL, Lou YC, Sulo P & Martin NC (1992) Proc. Natl. Acad. Sci. USA 89: 9875–9879

    Google Scholar 

  21. Zimmerly S, Drainas D, Sylvers LA & Söll D (1993) Eur. J. Biochem. 217: 501–507

    Google Scholar 

  22. Nichols M, Söll D & Willis I (1988) Proc. Natl. Acad. Sci. USA 85: 1379–1383

    Google Scholar 

  23. Drainas D, Zimmerly S, Willis I & Söll D (1989) FEBS Lett. 251: 84–88

    Google Scholar 

  24. Pace NR, Olsen GJ & Woese CR (1986) Cell 45: 325–326

    Google Scholar 

  25. Kimmel AR & Firtel AR (1982) In: Loomis WF (ed) The development ofDictyostelium discoideum. Academic press, New York, pp 233–324

    Google Scholar 

  26. Loomis WF (1982) The development ofDictyostelium discoideum. Academic Press, New York

    Google Scholar 

  27. De Lozanne A & Spudich JA (1987) Science 236: 1086–1091

    Google Scholar 

  28. Witke W, Nellen W & Noegel A (1987) EMBO J. 6: 4143–4148

    Google Scholar 

  29. Manstein DJ, Titus MA, De Lozanne A & Spudich JA (1989) EMBO J. 8: 923–932

    Google Scholar 

  30. Witke W, Schicher M & Noegel AA (1992) Cell 68: 53–62

    Google Scholar 

  31. Bussolino F, Sordano C, Benfenati E & Bozzaro S (1991) Eur. J. Biochem. 196: 609–615

    Google Scholar 

  32. Van Haastert PJM, Janssens PMW & Erneux C (1991) Eur. J. Biochem. 195: 289–303

    Google Scholar 

  33. Nellen W & Lichtenstein C (1993) Trends Biochem. Sci. 18: 419–423

    Google Scholar 

  34. Stathopoulos C, Kalpaxis DL & Drainas D (1995) Eur. J. Biochem. 228: 976–980

    Google Scholar 

  35. Reich C, Olsen GJ, Pace B & Pace NR (1988) Science 239: 178–181

    Google Scholar 

  36. Hollingsworth MJ & Martin NC (1987) Nucleic Acid Res. 15: 8845–8860

    Google Scholar 

  37. Darr SC, Pace B & Pace NR (1990) J. Biol. Chem. 265: 12927–12932

    Google Scholar 

  38. LaGrandeur TE, Darr SC, Haas ES & Pace NR (1993) J. Bacteriol. 175: 5043–5048

    Google Scholar 

  39. Jayanthi GP & Van Tuyle GC (1992) Arch. Biochem. Biophys. 296: 264–270

    Google Scholar 

  40. Hamilton MG (1971) Methods Enzymol. 20: 512–521

    Google Scholar 

  41. Akaboshi E, Guerrier-Takada C & Altman S (1980) Biochem. Biophys. Res. Commun. 96: 831–837

    Google Scholar 

  42. Morales MJ, Wise CA, Hollingsworth MJ & Martin NC (1989) Nucleic Acid Res. 17: 6865–6881

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drainas, D. The RNase P ofDictostyelium discoideum . Mol Biol Rep 22, 135–138 (1995). https://doi.org/10.1007/BF00988718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988718

Key words

Navigation