Skip to main content
Log in

Genetic analysis of the structure and function of RNase P fromE. coli

  • Special Issue: RNase MRP/RNase P Systems
  • RNase P
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A brief review of the genetic studies on ribonuclease P (RNase P) fromEscherichia coli is presented. Temperature-sensitive mutants ofE. coli defective in tRNA processing were isolated by screening cells which were unable to synthesize a suppressor tRNA at restrictive temperature. Structural analysis of accumulated tRNA precursors showed that the isolated mutants were defective in RNase P activity. Analyses of the mutants revealed that the enzyme is essential for the synthesis of all tRNA molecules in cells and that the enzymes consists of two subunits. Analyses of the isolated mutants revealed a possible domain structure of the RNA subunit of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E. coli :

Escherichia coli

RNase P:

ribonuclease P

References

  1. Shimura Y & Ozeki H (1973) Adv. Biophys. 4: 191–226

    Google Scholar 

  2. Schedl P & Primakof P (1973) Proc. Natl. Acad. Sci. USA. 70: 2091–2095

    Google Scholar 

  3. Sakano H, Yamada S, Ikemura T, Shimura Y & Ozeki H (1974) Nucleic Acids Res. 1: 355–371

    Google Scholar 

  4. Shimura Y & Sakano H (1977) In: Vogel HJ (Ed) Nucleic Acid-Protein Recognition (pp 293–319) Academic Press, New York

    Google Scholar 

  5. Shimura Y, Sakano H, Kubokawa S, Nagawa F & Ozeki H (1980) In: Soll D, Schimmel P & Abelson J (Eds) Transfer RNA: Biological Aspects (pp43–58) Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  6. Shimura Y & Shiraishi H (1990) Methods Enzymol. 181: 395–400

    Google Scholar 

  7. Sakano H & Shimura Y (1975) Proc. Natl. Acad. Sci. USA. 72: 3369–3373

    Google Scholar 

  8. Sakano H, Shimura Y & Ozeki H (1974) FEBS Letters 40: 312–316

    Google Scholar 

  9. Sakano H, Shimura Y & Ozeki H (1974) FEBS Letters 48: 117–121

    Google Scholar 

  10. Sakano H & Shimura Y (1978) J. Mol. Biol. 123: 287–326

    Google Scholar 

  11. Nakajima N, Ozeki H & Shimura Y (1981) Cell 23: 239–249

    Google Scholar 

  12. Nakajima N, Ozeki H & Shimura Y (1982) J. Biol. Chem. 257: 11113–11120

    Google Scholar 

  13. Shimura Y, Sakano H & Nagawa F (1978) Eur. J. Biochem. 86: 267–281

    Google Scholar 

  14. Stark BC, Kole R, Bowman EJ & Altman S (1978) Proc. Natl. Acad. Sci. USA 75: 3717–3721

    Google Scholar 

  15. Kole R & Altman S (1979) Proc. Natl. Acad. Sci. USA 76: 3795–3799

    Google Scholar 

  16. Kole R & Altman S (1980) Cell 19: 881–887

    Google Scholar 

  17. Sakamoto H, Kimura N, Nagawa F & Shimura Y (1983) Nucleic Acids Res. 23: 8237–8251

    Google Scholar 

  18. Sakamoto H, Kimura N & Shimura Y (1983) Proc. Natl. Acad. Sci. USA 80: 6187–6191

    Google Scholar 

  19. Reed R, Baer M, Guerrier-Takada C, Donis-Keller H & Altman S (1982) Cell 30: 627–636

    Google Scholar 

  20. Guerrier-Takada C & Altman S (1984) Biochemistry 23: 6327–6334

    Google Scholar 

  21. Guerrier-Takada C, Gardiner K, March T, Pace N & Altman S (1983) Cell 35: 849–857

    Google Scholar 

  22. Shiraishi H & Shimura Y (1988) EMBO J. 7: 3817–3821

    Google Scholar 

  23. Shiraishi H & Shimura Y (1986) EMBO J. 5: 3673–3679

    Google Scholar 

  24. Shiaishi H & Shimura Y (1988) Gene 64: 313–319

    Google Scholar 

  25. Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC & Pace NR (1994) EMBO J. 13: 3953–3963

    Google Scholar 

  26. Kirsebom LA, Baer MF & Altman S (1988) J. Mol. Biol. 204: 879–888

    Google Scholar 

  27. Reich C, Olsen GJ, Pace B & Pace N (1988) Science 239: 178–181

    Google Scholar 

  28. Tallsjo A & Kirsebom LA (1992) Nucleic Acids Res. 21: 51–57

    Google Scholar 

  29. Vioque A, Arnez J & Altman S (1988) J. Mol. Biol. 202: 835–848

    Google Scholar 

  30. Szostak JW (1992) Trends Biochem. Sci. 17: 89–93

    Google Scholar 

  31. Shiraishi H, Okada K & Shimura Y (1993) Plant J. 4: 385–398

    Google Scholar 

  32. Brown JW, Haas ES, Gilbert DG & Pace NR (1994) Nucleic Acids Res 22: 3660–3662

    Google Scholar 

  33. James BD, Olsen GJ, Liu J & Pace NR (1988) Cell 52: 19–26

    Google Scholar 

  34. Haas ES, Morse DP, Brown JW, Schmidt FJ & Pace NR (1991) Science 254: 853–856

    Google Scholar 

  35. Tallsjo A, Svard SG, Kufel J & Kirsebom LA (1993) Nucleic Acids Res. 21: 3927–3933

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiraishi, H., Shimura, Y. Genetic analysis of the structure and function of RNase P fromE. coli . Mol Biol Rep 22, 111–114 (1995). https://doi.org/10.1007/BF00988714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988714

Key words

Navigation