Advertisement

Molecular Biology Reports

, Volume 22, Issue 2–3, pp 81–85 | Cite as

Structural and functional similarities between MRP and RNase P

  • Ram Reddy
  • Shigeki Shimba
Special Issue: RNase MRP/RNase P Systems RNase MRP

Abstract

RNase P, the enzyme responsible for 5′-end processing of tRNAs and 4.5S RNA, has been extensively characterized fromE. coli. The RNA component ofE. coli RNase P, without the protein, has the enzymatic activity and is the first true RNA enzyme to be characterized. RNase P and MRP are two distinct nuclear ribonucleoprotein (RNP) particles characterized in many eukaryotic cells including human, yeast and plant cells. There are many similarities between RNase P and MRP. These include: (1) sequence specific endonuclease activity; (2) homology at the primary and secondary structure levels; and (3) common proteins in both the RNPs. It is likely that RNase P and MRP originated from a common ancestor.

Key words

MRP RNase P RNA processing Th-40 antigen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stark BC, Kole R, Bowman EJ & Altman S (1978) Proc. Natl. Acad. Sci. USA 75: 3717–3721Google Scholar
  2. 2.
    Gold H & Altman S (1986) Cell 44: 243–249Google Scholar
  3. 3.
    Altman S (1989) Adv. Enzymol. 62: 1–36Google Scholar
  4. 4.
    Guerrier-Takada C, Gardiner K, Marsh T, Pace, N & Altman, S (1983) Cell 35: 849–857Google Scholar
  5. 5.
    Bartkiewicz M, Gold HA & Altman S (1988) Genes Dev. 3: 488–499Google Scholar
  6. 6.
    Rossmanith W, Karwan R. (1993) Molecular Biol. Reports 18: 29–35Google Scholar
  7. 7.
    Reimer G, Raska I, Scheer U, & Tan EM (1988) Exp. Cell Res. 176: 117–128Google Scholar
  8. 8.
    Gold HA, Craft J, Hardin JA, Bartkiewicz S & Altman S (1988) Proc. Natl. Acad. Sci. USA 85: 5483–5487Google Scholar
  9. 9.
    Hashimoto C & Steitz JA (1983) J. Biol. Chem. 258: 1379–1382Google Scholar
  10. 10.
    Reddy R, Tan EM, Henning D, Nohga K, & Busch H (1983) J. Biol. Chem. 258: 1383–1386Google Scholar
  11. 11.
    Gold HA, Topper JN, Clayton DA & Craft J (1989) Science 245: 1377–1380Google Scholar
  12. 12.
    Topper J N & Clayton DA (1990) Nucleic Acids Res. 18: 793–799Google Scholar
  13. 13.
    Chang DD & Clayton DA (1989) Cell 56: 131–139Google Scholar
  14. 14.
    Yuan Y, Singh R & Reddy R (1989) J. Biol. Chem. 264: 14835–14839Google Scholar
  15. 15.
    Dairaghi DJ & Clayton DA (1993) J. Mol. Evol. 37: 338–346Google Scholar
  16. 16.
    Bennett J L and Jeong-Yu S & Clayton DA (1992) J. Biol. Chem. 267: 21765–21772Google Scholar
  17. 17.
    Schmitt ME & Clayton, DA (1992) Genes & Dev. 6: 1975–1985Google Scholar
  18. 18.
    Kiss T, Marshallsay C & Filipowicz W (1992) EMBO J. 11: 3737–3746Google Scholar
  19. 19.
    Schmitt ME & Clayton DA (1993) Mol. Cell. Biol. 13: 7935–7941Google Scholar
  20. 20.
    Chu S, Archer RH, Zengal JM & Lindahl L (1994) Proc. Natl. Acad. Sci. USA 91: 659–663Google Scholar
  21. 21.
    Clayton DA (1994) Proc. Natl. Acad. Sci. 91: 4615–4617Google Scholar
  22. 22.
    Lygerou Z, Mitchell P, Petfalshi E, Seraphin B & Tollervey D (1994) Genes & Dev. 8: 1423–1433Google Scholar
  23. 23.
    Morrissey JP & Tollervey D (1995) Trends in Biomedical Sci. 20: 78–82Google Scholar
  24. 24.
    Karwan R (1993) FEBS Lett. 319: 1–4Google Scholar
  25. 25.
    Chang DD & Clayton DA (1987) EMBO J. 6: 409–417Google Scholar
  26. 26.
    Altman S, Baer M, Guerrier-Takada C & Vioque A (1986) Trends in Biochem. Sci. 11: 515–518Google Scholar
  27. 27.
    Tullo A, Rossmanith W, Imre E, Sbisa E, Saccone C and Karwan RM (1995) Eur. J. Biochem. 227: 657–662Google Scholar
  28. 28.
    Darr SC, Brown JW & Pace, NR (1992) Trends in Biochem. Sci. 17: 178–182Google Scholar
  29. 29.
    Altman S, Kirsebom L & Talbot S (1993) FASEB J. 7: 7–14.Google Scholar
  30. 30.
    Bothwell AL, Garber RL & Altman S (1976) J. Biol. Chem. 251: 7709–7716Google Scholar
  31. 31.
    Potuschak T, Rossmanith W & Karwan R (1993) Nucl. Acids Res. 21: 3239–3243Google Scholar
  32. 32.
    Gegenheimer P & Apirion D (1978) Cell 15: 527–539Google Scholar
  33. 33.
    Alifano P, Rivellini F, Piscitelli C, Arraiano CM, Bruni CM & Carlomagno MS (1994) Genes and Development 8: 3021–3031Google Scholar
  34. 34.
    Jung YH, Park I, Lee Y, (1992) Biochemical & Biophysical Research Communications 186:1463–1470Google Scholar
  35. 35.
    Miczak A, Srivastava RAK & Apirion D (1991) Molecular Microbiology 5: 1801–1810Google Scholar
  36. 36.
    Apirion D & Miczak A (1993) BioEssays 15: 113–120Google Scholar
  37. 37.
    Subbarao MN, Makam H & Apirion D (1984) J. Biol. Chem. 259: 14339–14342Google Scholar
  38. 38.
    Watson N, Gurevitz M, Ford J & Apirion D (1984) J. Mol. Biol. 172: 301–323Google Scholar
  39. 39.
    Apirion D (1983) Prog. Nucl. Acids Res. Mol. Biol. 39: 1–40Google Scholar
  40. 40.
    Apirion D, Dallmann G, Gurevitz M, Miczak A, Pragai B, Subba Rao MN, Szeberenyi J, Tomcsanyi T & Watson N (1985) Nuclear envelope structure and RNA maturation. pp. 331–353. Alan Liss, Inc.Google Scholar
  41. 41.
    Schmitt ME & Clayton D (1994) 8: 2617–2628Google Scholar
  42. 42.
    Liu F & Altman S (1995) Genes & Development 9: 471–480Google Scholar
  43. 43.
    Ushida C, Himeno H, Watanabe T & Muto A (1994) Nucl. Acids Res. 22: 3392–3396Google Scholar
  44. 44.
    Kole R & Altman S (1981) Biochemistry 20: 1902–1906Google Scholar
  45. 45.
    Matera AG, Frey MR, Margelot K & Wolin SL (1995) J. Cell Biol. 129: 1181–1193Google Scholar
  46. 46.
    Mamula MJ, Baer M, Craft J & Altman S (1989) Proc. Natl. Acad. Sci. USA 86: 8717–8721.Google Scholar
  47. 47.
    Zimmerly S, Drainas D, Sylvers, LA & Soll D (1993) Eur. J. Biochem. 217: 501–507Google Scholar
  48. 48.
    Zimmerly S, Gamulin V, Burkard U & Soll D (1990) FEBS Lett. 271: 189–193Google Scholar
  49. 49.
    Lee J-Y, Rohlman C E, Molony, LA & Engelke DR (1991) Mol. Cell. Biol. 11: 721–730Google Scholar
  50. 50.
    Doersen C-J, Guerrier-Takada C, Altman S & Attardi G (1985) J. Biol. Chem. 260: 5942–5949Google Scholar
  51. 51.
    Hollingsworth M & Martin N (1986) Mol. Cell. Biol. 6: 1058–1064Google Scholar
  52. 52.
    Wang MJ, Davis NW & Gegenheimer P (1988) EMBO J. 7: 1567–1574Google Scholar
  53. 53.
    Reddy R, Li W-Y, Henning D, Choi YC, Nohga K & Busch H (1981) J. Biol. Chem. 256: 8452–8457Google Scholar
  54. 54.
    Topper JN, Bennett, JL & Clayton DA (1992) Cell 70: 16–20Google Scholar
  55. 55.
    Li K, Smagula CS, Parsons WJ, Richardson JA, Gonzalez M, Hagler H & Williams RS (1994) J. Cell. Biol. 124: 871–882Google Scholar
  56. 56.
    Davis AF, Jeong-Yu, S & Clayton DA (1995) Mol. Reprod. Devel. 42: 359–368Google Scholar
  57. 57.
    Baer M, Nilse TW, Costigan C & Altman C (1990) Nucleic Acids Res. 18: 97–103Google Scholar
  58. 58.
    Yuan Y & Reddy R (1991) Biochem Biophys Acta 1089: 33–39Google Scholar
  59. 59.
    Forster AC & Altman S (1990) Cell 62: 407–409Google Scholar
  60. 60.
    Liu MH, Yuan Y & Reddy R (1994) Mol. Cell. Biochem. 130: 75–82Google Scholar
  61. 61.
    Schmitt ME, Bennett JL, Dairaghi DJ & Clayton DA (1993) FASEB J. 7: 208–213Google Scholar
  62. 62.
    James BD, Olsen, GJ, Liu J & Pace NR (1988) Cell 52: 19–26Google Scholar
  63. 63.
    Rossmanith W, Tullo A, Potuschak T, Karwan RM, Sbisa E (1995) J. Biol. Chem. 270: 12885–12891Google Scholar
  64. 64.
    Cote J & Ruiz-Carrilo A (1993) Science 261: 765–768Google Scholar
  65. 65.
    Attardi G & Schatz G (1988) Ann Rev Cell Biol. 4: 289–333Google Scholar
  66. 66.
    Attardi G, Chomyn A, King MP, Kruse B, Polosa PL & Murdter NN (1990) Biochemical Society Transactions 18:509–13, 1990Google Scholar
  67. 67.
    Clayton DA (1991) Ann. Rev. Cell Biol. 7: 453–478Google Scholar
  68. 68.
    Chang DD, Hauswirth WW & Clayton D (1985) EMBO J. 4: 1559–1567Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Ram Reddy
    • 1
  • Shigeki Shimba
    • 1
  1. 1.Department of PharmacologyBaylor College of MedicineHoustonUSA

Personalised recommendations