Skip to main content
Log in

Allotetraploid origin ofAllium altyncolicum (Alliaceae, Allium sect.Schoenoprasum) as investigated by karyological and molecular markers

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The tetraploidAllium altyncolicum (2n = 4x = 32) is considered to be of hybrid origin, because most of its morphological characters are intermediate between those of its putative parents,A. schoenoprasum andA. ledebourianum. In the present work an attempt has been made to ascertain its parentage by several methods: Giemsa C-banding, genomic in situ hybridization (GISH), PCR-RFLP of cpDNA, restriction enzyme mapping of the rDNA, and RAPDs. C-banding and GISH indicates clearly thatA. altyncolicum is a segmental allopolyploid.Allium schoenoprasum andA. ledebourianum are the most likely the parental species and the larger part of the genome ofA. altyncolicum (26 chromosomes) is derived fromA. schoenoprasum. The low genetic divergence between these three species was confirmed by the lack of sequence variation in the ITS sequences of nuclear rRNA genes and of the plastid rbcL-atpB intergenic spacer. Both parental species andA. altyncolicum could be distinguished by RFLP of the rDNA repeats. The geographic origin of the putative parental species was investigated using RAPDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adaniya, S., Fujieda, K., Matsu, E., Ogawa, T., 1978: Karyotypes and origin ofAllium wakegi. — Chromosome Inform. Serv.24: 16–18.

    Google Scholar 

  • Agapova, N. D., Archarova, K. B., Vachtina, L. I., Zemskova, E. A., Tarvis, L. V., 1990: Chromosome numbers of flowering plants USSR:AceraceaeMenyanthaceae. — Leningrad: Nauka. (In Russian.)

    Google Scholar 

  • Allard, R. W., Garcia, P., Saenz-de-Miera, L. E., Perez de la Vega, M., 1993: Evolution of multilocus genetic structure inAvena hirtula andAvena barbata. — Genetics135: 1125–1139.

    PubMed  Google Scholar 

  • Anamthawat-Jonsson, K., Schwarzacher, T., Leitch, A. R., Bennett, M. D., Heslop-Harrison, J. S., 1990: Discrimination between closely relatedTriticeae species using genomic DNA as a probe. — Theor. Appl. Genet.79: 721–728.

    Google Scholar 

  • —, 1996: Genomic in situ hybridization for whole chromosome and genome analysis. — InClark, M., (Ed.): In situ hybridization. Laboratory companion, pp. 1–23. — Weinheim: Chapman & Hall.

    Google Scholar 

  • Bailey, J. P., Bennett, S. T., Bennett, M. D., Stace, C. A., 1993: Genomic in situ hybridization identifies parental chromosomes in the wild grass hybrid ×Festulpia hubbardii. — Heredity71: 413–420.

    Google Scholar 

  • Bennett, S. T., Kenton, A. Y., Bennett, M. D., 1992: Genomic in situ hybridization reveals the allopolyploid nature ofMilium montianum (Gramineae). — Chromosoma101: 420–424.

    Google Scholar 

  • Borisjuk, N., Hemleben, V., 1993: Nucleotide sequence of the potato rDNA intergenic spacer. — Pl. Molec. Biol.21: 381–384.

    Google Scholar 

  • —, 1989: Ribosomal RNA gene organization in higher plant fromNicotiana genus. — Molec. Biol. (Russia)23: 1067–1074.

    Google Scholar 

  • —, 1989: Organization of ribosomal RNA genes inBrassica oleracea, Brassica campestris and their natural allotetraploid hybridBrassica napus. — Genetica25: 417–424.

    Google Scholar 

  • —, 1994: Comparison of nuclear ribosomal RNA genes amongSolanum species and otherSolanaceae. — Genome37: 271–279.

    PubMed  Google Scholar 

  • Cai, Q., Chinnappa, C. C., 1987: Giemsa C-banded karyotypes of seven North American species ofAllium. — Amer. J. Bot.74: 1087–1092.

    Google Scholar 

  • Demesure, B., Sodzi, N., Petit, R. J., 1995: A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. — Molec. Ecol.4: 129–131.

    Google Scholar 

  • Ehrendorfer, F., 1980: Polyploidy and distribution. — InLewis, W., (Ed.): Polyploidy: biological relevance, pp. 45–66. — New York: Plenum Press.

    Google Scholar 

  • Fiskesjö, G., 1975: Chromosomal relationships between three species ofAllium as revealed by C-banding. — Hereditas81: 23–32.

    Google Scholar 

  • Friesen, N., 1985: Chromosome numbers in the representatives of the familyAlliaceae from the Siberia. — Bot. J. Leningrad70: 1001–1002. (In Russian.)

    Google Scholar 

  • —, 1987: A new species of the genusAllium (Alliaceae) from the Altai. — Bot. Zhurn. (Moscow & Leningrad)72: 815–820. (In Russian.)

    Google Scholar 

  • —, 1988:Alliaceae of Siberia: systematics, karyology, chorology. — Novosibirsk: Nauka, Sibir. Otdel. (In Russian.)

    Google Scholar 

  • —, 1996: A taxonomic and chorological revision of the genusAllium L. sect.Schoenoprasum Dumort. — Candollea51: 461–473.

    Google Scholar 

  • Fuchs, J., Brandes, A., Schubert, I., 1995: Telomere sequence localisation and karyotype evolution in higher plants. — Pl. Syst. Evol.196: 227–241.

    Google Scholar 

  • Grant, V., 1981: Plant speciation. — New York: Columbia University Press.

    Google Scholar 

  • Greilhuber, J., 1984: Chromosomal evidence in taxonomy. — InHeywood, V. H., Moore, D. M., (Eds): Current concepts in plant taxonomy. — Syst. Ass. Spec. Vol.25: 157–180. — London, Orlando: Academic Press.

    Google Scholar 

  • —, 1976: C-banded karyotypes in theScilla hohenackeri group,S. persica, andPuschkinia (Liliaceae). — Pl. Syst. Evol.126: 149–188.

    Google Scholar 

  • —, 1978: Quantitative analyses of C-banded karyotypes, and systematics in the cultivated species of theScilla siberica group (Liliaceae). — Pl. Syst. Evol.129: 63–109.

    Google Scholar 

  • Gründler, P., Unfried, I., Pascher, K., Schweizer, D., 1991: rDNA intergenic region fromArabidopsis thaliana. Structural analysis, intraspecific variation and functional implications. — J. Molec. Biol.221: 1209–1222.

    PubMed  Google Scholar 

  • Havey, M. J., 1992: Restriction enzyme analysis of the nuclear 45S ribosomal DNA of six cultivated Alliums (Alliaceae). — Pl. Syst. Evol.181: 45–55.

    Google Scholar 

  • Hemleben, V., Ganal, M., Gerstner, J., Schiebel, K., Torres, R. A., 1988: Organization and length heterogeneity of plant ribosomal RNA genes. — InKahl, G., (Ed.): The architecture of eukaryotic genes, pp. 371–384. — Weinheim: VHC.

    Google Scholar 

  • Heslop-Harrison, J. S., Schwarzacher, T., Leitch, A. R., Anamthawat-Jónsson, K., Bennett, M. D., 1988: A method of identifying DNA sequences in chromosomes of plants. — European Patent Application Number 8828130.8.

  • —, 1990: Detection and characterization of 1B/1R translocation in hexaploid wheat. — Heredity65: 356–362.

    Google Scholar 

  • Hizume, M., 1994: Allodiploid nature ofAllium wakegi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNAs. — Japan. J. Genet.69: 407–415.

    Google Scholar 

  • Keller, E. R. J., Schubert, I., Fuchs, J., Meister, A., 1996: Interspecific crosses of onion with distantAllium species and characterization of the presumed hybrids by means of flow cytometry, karyotype analysis and genomic in situ hybridization. — Theor. Appl. Genet.92: 417–424.

    Google Scholar 

  • Kenton, A., 1978: Giemsa C-banding inGibasis (Commelinaceae). — Chromosoma65: 309–324.

    Google Scholar 

  • Krylov, P., 1912: Flora of Altai and Tomsk Gubernia.6, pp. 1251–1534. — Tomsk. (In Russian.)

    Google Scholar 

  • Leitch, A. R., Schwarzacher, T., Mosgoller, W., Bennett, M. D., Heslop-Harrison, J. S., 1991: Parental genomes are separated throughout the cell cycle in a plant hybrid. — Chromosoma101: 206–213.

    Google Scholar 

  • —, 1994: In situ hybridization: a practical guide. — Oxford: BIOS Scientific Publishers.

    Google Scholar 

  • Levan, A., 1936: Zytologische Studien anAllium schoenoprasum. — Hereditas22: 1–128.

    Google Scholar 

  • Maaß, H. I., Klaas, M., 1995: Infraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. — Theor. Appl. Genet.91: 87–97.

    Google Scholar 

  • Mc Mullen, M. D., Hunter, D. B., Phillips, R. L., Rubenstein, I., 1986: The structure of the maize ribosomal DNA spacer region. — Nucl. Acids Res.14: 4953–4968.

    PubMed  Google Scholar 

  • Maggini, F., Garbari, F., 1977: Amount of ribosomal DNA inAllium (Liliaceae). — Pl. Syst. Evol.128: 201–208.

    Google Scholar 

  • Mes, T. H. M., Friesen, N., Fritsch, R. M., Klaas, M., Bachmann, K., 1997: Criteria for sampling inAllium based on chloroplast DNA PCR-RFLPs. — Syst. Bot. (in press).

  • Mukai, Y., Gill, B. S., 1991: Detection of barley chromatin added to wheat by genomic in situ hybridization. — Genome34: 448–452.

    Google Scholar 

  • —, 1993: Sumultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and hyghly repeated DNA probes. — Genome36: 489–494.

    Google Scholar 

  • Parokonny, A. S., Kenton, A. Y., Meredith, L., Owens, S. J., Bennett, M. D., 1992: Genomic divergence of allopatric sibling species studied by molecular cytogenetics of their F1 hybrids. — Pl. J.2: 695–704.

    Google Scholar 

  • Puizina, J., Papes, D., 1996: Cytogenetical evidences for hybrid structure and origin of diploid and triploid shallots (Allium cepa var.viviparum, liliaceae) from Dalmatia (Croatia). — Pl. Syst. Evol.199: 203–215.

    Google Scholar 

  • Rieseberg, L. H., 1996: Homology among RAPD fragments in interspecific comparisons. — Molec. Ecol.5: 99–105.

    Google Scholar 

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., Allard, R. W., 1984: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. — Proc. Natl. Acad. Sci. USA81: 8014–8018.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F., Maniatis, T., 1989: Molecular cloning: a laboratory manual. — Cold Spring Harbor, N.Y.: Cold Spring Habor Laboratory Press.

    Google Scholar 

  • Schubert, I., Ohle, H., Hanelt, P., 1983: Phytogenetic conclusions from Giemsa banding and NOR staining in top onions (Liliaceae). — Pl. Syst. Evol.143: 245–256.

    Google Scholar 

  • —, 1985: In situ hybridization confirms jumping nucleolus organizing region inAllium. — Chromosoma92: 143–148.

    Google Scholar 

  • Schwarzacher, T., Leitch, A. R., Bennett, M. D., Heslop-Harrison, J. S., 1989: In situ localization of parental genomes in a wide hybrid. — Ann. Bot.64: 315–324.

    Google Scholar 

  • —, 1980: Application of Giemsa banding to orchid karyotype analysis. — Pl. Syst. Evol.134: 293–297.

    Google Scholar 

  • Schwarzacher, T., Heslop-Harrison, J. S., Anamthawat-Jónsson, K., Finch, R. A., Bennett, M. D., 1992: Parental genome separation in reconstructions of somatic and premeiotic metaphases ofHordeum vulgare ×H. bulbosum. — J. Cell Sci.101: 13–24.

    Google Scholar 

  • Stearn, W. T., 1980:Allium L. — InTutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M., Webb, D. A., (Eds): Flora Europaea,5, pp. 49–69. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Tal, M. M., 1980: Physiology of polyploids. — InLewis, W., (Ed.): Polyploidy: biological relevance, pp. 61–75. — New York: Plenum Press.

    Google Scholar 

  • Tatlioglu, T., 1993: ChiveAllium schoenoprasum L. — InKalloo, G., Bergh, B. O., (Eds): Genetic improvement of vegetable crops, pp. 3–13. — Oxford: Pergamon Press.

    Google Scholar 

  • Tardif, B., Morisset, P., 1991: Chromosomal C-band variation inAllium schoenoprasum (Liliaceae) in eastern North America. — Pl. Syst. Evol.174: 125–137.

    Google Scholar 

  • Tsumura, Y., Yoshimura, K., Tomaru, N., Ohba, K., 1995: Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. — Theor. Appl. Genet.91: 1222–1236.

    Google Scholar 

  • Turesson, G., 1931: Über verschiedene Chromosomenzahlen inAllium schoenoprasum L. — Bot. Not.86: 15–20.

    Google Scholar 

  • —, 1966: Genecological notes onAllium schoenoprasum L. — Trans. & Proc. Bot. Soc. Edinburgh40: 181–184.

    Google Scholar 

  • Vosa, C. G., 1973: Heterochromatin recognition and analysis of chromosome variation inScilla siberica. — Chromosoma43: 269–278.

    Google Scholar 

  • —, 1976: Heterochromatic patterns inAllium I. The relationship between the species of thecepa group and its allies. — Heredity36: 383–392.

    Google Scholar 

  • White, T. J., Bruns, T., Lee, S., Taylor, J., 1990: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. — InInnis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J., (Eds): PCR-protocols, a guide to methods and applications, pp. 315–322. — London, New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friesen, N., Borisjuk, N., Mes, T.H.M. et al. Allotetraploid origin ofAllium altyncolicum (Alliaceae, Allium sect.Schoenoprasum) as investigated by karyological and molecular markers. Pl Syst Evol 206, 317–335 (1997). https://doi.org/10.1007/BF00987955

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987955

Key words

Navigation