Plant Systematics and Evolution

, Volume 206, Issue 1–4, pp 175–185 | Cite as

Selenicereus wittii (Cactaceae): An epiphyte adapted to Amazonian Igapó inundation forests

  • Wilhelm Barthlott
  • Stefan Porembski
  • Manfred Kluge
  • Jörn Hopke
  • Loki Schmidt
Article

Abstract

The biology, ecology, and distribution ofSelenicereus (Strophocactus)wittii, one of the least known taxa ofCactaceae, are described. This epiphyte climbs appressed to tree trunks with leaf-like, flattened stems and is found exclusively along the high waterline of black water rivers (Rio Negro, Vaupés, Apaporis) in the Igapó inundation forests of Amazonia. Ecophysiologically,S. wittii is a crassulacean acid metabolism (CAM) plant. It bears white, nocturnal flowers 25 cm in length which emit a fragrance consisting mainly of benzylalcohol, benzyl benzoate, and benzyl salicylate. They exhibit an extreme sphingophilous syndrome as an adaptation to pollination by probably only two species of hawkmoth from the generaAmphimoena andCocytius. The seeds, aberrant for the family, contain air-filled chambers and are water-dispersed. Thus,S. wittii represents the paradoxical life form of an hydrochorous epiphytic cactus which withstands periodical inundation.

Key words

Cactaceae Selenicereus wittii Igapó Amazonia epiphytes dispersal pollination anatomy ecophysiology crassulacean acid metabolism (CAM) fragrance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthlott, W., Hunt, D. R., 1993:Cactaceae. — InKubitzki, K., (Ed.): The families and genera of flowering plants,2, pp. 161–197. — Berlin, Heidelberg, New York: Springer.Google Scholar
  2. —, 1975–1976: Some notes on the morphology, palynology, and geographical variability ofEpiphyllum phyllanthus (L.)Haw. (Cactaceae), the type species of the genus. — Natl. Cact. Succ. J.29: 113–115;30: 8–10.Google Scholar
  3. —, 1996: Ecology and morphology ofBlossfeldia liliputana (Cactaceae): a poikilohydric and almost astomate succulent. — Bot. Acta109: 161–166.Google Scholar
  4. —, 1979: Mikromorphologie der Samenschalen und Taxonomie derCactaceae: Ein raster-elektronenmikroskopischer Überblick. — Pl. Syst. Evol.132: 205–229.Google Scholar
  5. Britton, N. L., Rose, J. N., 1913: Studies inCactaceae. — Contr. U. S. Natl. Herb.16: 255–262.Google Scholar
  6. —, 1920: TheCactaceae. — Carnegie Inst. Wash. Publ.248/2: 211–222.Google Scholar
  7. Burr, B., Barthlott, W., 1993: Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten II. — Trop. Subtrop. Pflanzenwelt87.Google Scholar
  8. D'Abrera, B., 1986:Sphingidae mundi. Hawk moths of the world. — London: Classey.Google Scholar
  9. Darwin, C., 1862: On the various contrivances by which British and foreign orchids are fertilized by insects. — London: Murray.Google Scholar
  10. Donath, J., Boland, W., 1995: Biosynthesis of acyclic homoterpenes: enzyme selectivity and absolute configuration of the nerolidol precursor. — Phytochemistry39: 785–790.Google Scholar
  11. Farquhar, G. D., Sharkey, T. D., 1982: Stomatal conductance and photosynthesis. — Annual Rev. Pl. Physiol.33: 317–345.Google Scholar
  12. Gibson, A. C., Nobel, P. S., 1986: The cactus primer. — Cambridge: Harvard University Press.Google Scholar
  13. Grams, T. T. E., Beck, F., Lüttge, U., 1996: Generation of rhythmic and arrhythmic behaviour of Crassulacean acid metabolism inKalanchoe daigremontiana under continuous light by varying the irradiance or temperature: Measurements in vivo and model simulations. — Planta198: 110–117.Google Scholar
  14. Haber, W. A., Frankie, G. W., 1989: A tropical hawkmoth community. — Biotropica21: 155–172.Google Scholar
  15. Kaiser, R., 1991: Trapping, investigation and reonstitution of flower scents. — InMüller, P. M., Lamparsky, D., (Eds): Perfumes, art, science, technology. — Elsevier Applied Science1991, pp. 213–250. — Amsterdam, Oxford, New York: Elsevier.Google Scholar
  16. —, 1993: The scent of orchids. — Amsterdam, Oxford, New York: Elsevier.Google Scholar
  17. Kluge, M., Ting, I. P., 1978: Crassulacean acid metabolism. Analysis of an ecological adaptation. — Ecol. Stud. Analysis Synth.30. — Berlin, Heidelberg, New York: Springer.Google Scholar
  18. Kubitzki, K., 1989: The ecological differentiation of Amazonian inundation forest. — Pl. Syst. Evol.162: 285–304.Google Scholar
  19. —, 1994: Seed dispersal in flood plain forests of Amazonia. — Biotropica26: 30–43.Google Scholar
  20. Leuenberger, B., 1975: Die Pollenmorphologie derCactaceae und ihre Bedeutung für die Systematik. — Diss. Bot.31. — Vaduz: Cramer.Google Scholar
  21. Lüttge, M., Stimmel, K.-H., Smith, J. A. C., Griffith, H., 1986: Comparative ecophysiology of CAM and C3 bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. — Pl. Cell Environm.9: 377–388.Google Scholar
  22. Mee, M., 1988: In search of flowers of the Amazon Forests. — Woodbridge: Nonesuch Expeditions Publisher.Google Scholar
  23. Nilsson, L. A., Jonsson, L., Rason, L., Randrianjohanny, E., 1985: Monophily and pollination mechanisms inAngraecum arachnites Schltr. (Orchidaceae) in a guild of long-tongued hawk moths (Sphingidae) in Madagascar. — Biol. J. Linn. Soc.26: 1–19.Google Scholar
  24. Osmond, C. B., 1982: Carbon cycling and stability of the photosynthetic apparatus in CAM. — InTing, I. P., Gibbs, M., (Eds): Crassulacean acid metabolism, pp. 112–127. — Rockville: American Society of Plant Physiologists.Google Scholar
  25. Peukert, D. E., 1980: Zur Anatomie vonEpiphyllum chrysocardium Alexander (Cactaceae): Epidermis und Stomatogenese. — Flora169: 1–8.Google Scholar
  26. Rundel, P. W., Ehleringer, K. A., Nagy, K. A., 1989: Stable isotopes in ecological research. — Ecol. Stud. Analysis Synth.68. — Berlin, Heidelberg, New York: Springer.Google Scholar
  27. Schumann, K., 1900:Cereus wittii K. Sch. — Monatsschr. Kakteenk.10: 153–158.Google Scholar
  28. —, 1902: Die Blüte vonCereus wittii. — Monatsschr. Kakteenk.12: 137–138.Google Scholar
  29. Seitz, A., 1940: Die Groß-Schmetterlinge der Erde.6. — Stuttgart: Kerner.Google Scholar
  30. Winter, K., Smith, J. A. C., 1996: Crassulacean acid metabolism. — Ecol. Stud. Analysis Synth.114. — Berlin, Heidelberg, New York: Springer.Google Scholar
  31. Ziegler, H., Osmond, B., Stichler, P., Trimborn, P., 1976: Hydrogen isotope discrimination in higher plants: correlation with photosynthetic pathway and environment. — Planta128: 85–92.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Wilhelm Barthlott
    • 1
  • Stefan Porembski
    • 1
  • Manfred Kluge
    • 2
  • Jörn Hopke
    • 3
  • Loki Schmidt
    • 4
  1. 1.Botanisches InstitutUniversität BonnBonnFederal Republic of Germany
  2. 2.Institut für BotanikTechnischen Hochschule DarmstadtDarmstadtFederal Republic of Germany
  3. 3.Institut für Organische Chemie und BiochemieUniversität BonnBonnFederal Republic of Germany
  4. 4.Stiftung zum Schutze gefährdeter Pflanzen e.V.HamburgFederal Republic of Germany

Personalised recommendations