Advertisement

Journal of Chemical Ecology

, Volume 9, Issue 7, pp 817–829 | Cite as

Antifouling agents against the benthic marine diatom,Navicula salinicola Homarine from the gorgoniansLeptogorgia virgulata andL. setacea and analogs

  • N. M. Targett
  • S. S. Bishop
  • O. J. McConnell
  • J. A. Yoder
Article

Abstract

At concentrations found in the gorgonian corals,Leptogorgia virgulata (L.) andL. setacea (L.), homarine (N-methyl-2-carboxypyridine) and water-soluble extracts from the gorgonians that contained homarine inhibited the growth of the potential fouling diatom.Navicula salinicola Hust., by 50–60%. Homarine comprised 0.3 and 0.25% of the fresh weight ofL. virgulata andL. setacea, respectively, and the water-soluble extracts comprised 4.0 and 3.0% of the fresh weight of the gorgonians, respectively. Three compounds structurally related to homarine including, in order of most to least active, nicotinic acid, picolinic acid, and pyridine, also reduced growth ofN. salinicola. The activity of these compounds in the diatom assay suggests that the carboxyl group at the 2 position of the pyridine ring is important for activity and thatN-methylation is not important. We conclude that chemical defense against fouling is operative inLeptogorgia species. Evidence from the literature for combined chemical and mechanical defenses byLeptogorgia and other organisms against fouling is presented.

Key words

Chemical defense fouling inhibitors homarine Leptogorgia virgulata Leptogorgia setacea Navicula salinicola 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Ogily, S.M., andKnight-Jones, E.W. 1977. Anti-fouling role of antibiotics produced by marine algae and bryozoans.Nature 265:728–729.Google Scholar
  2. Baker, J.T., andMurphy, V. 1976. Handbook of Marine Science: Compounds from Marine Organisms. Vol. 1. CRC Press. Cleveland, Ohio, 226 pp.Google Scholar
  3. Bakus, G.J. 1981. Chemical defense mechanisms on the Great Barrier Reef, Australia.Science 211:497–499.Google Scholar
  4. Bayer, F.M. 1961. The Shallow WaterOctocorallia of the West Indian Region. Martinus Nijhoff, The Hauge, Netherlands, 373 pp.Google Scholar
  5. Burkholder, P.R. 1973. The ecology of marine antibiotics and coral reefs, pp. 117–182,in O.A. Jones and R. Endean (eds.). Biology and Geology of Coral Reefs, Vol. II: Biology I. Academic Press, New York.Google Scholar
  6. Burkholder, P.R., andBurkholder, L.M. 1958. Antimicrobial activity of horny corals.Science 127:1174–1175.Google Scholar
  7. Chan, A.T., Andersen, R.J., LeBlanc, M.J., andHarrison, P.J. 1980. Algal plating as a tool for investigating allelopathy among marine microalgae.Mar. Biol. 59:7–13.Google Scholar
  8. Ciereszko, L.S., 1962. Chemistry of coelenterates. III. Occurrence of antimicrobial terpenoid compounds in the zooxanthellae of alcyonarians.Trans. N. Y. Acad. Sci. 24:502–503.Google Scholar
  9. Ciereszko, L. S., andKarns, T.K.B. 1973. Comparative biochemistry of coral reef coelenterates, pp. 188–203.in O.A. Jones and R. Endean (eds.). Biology and Geology of Coral Reefs. Vol. II: Biology 1. Academic Press, New York.Google Scholar
  10. Ciereszko, L.S., Sifford, D.H., andWeinheimer, A.J. 1960. Chemistry of coelenterates. I. Occurrence of terpenoid compounds in gorgonians.Ann. N. Y. Acad. Sci. 90:917–919.Google Scholar
  11. Ciereszko, L.S., Mizelle, J.W., andSchmidt, R.W. 1973. Occurrence of taurobetaine in coelenterates and of polysaccharide sulfate in the gorgonianPseudolerogorgia americana, pp. 177–180,in L.R. Worthen (ed.). Food-Drugs from the Sea Proceedings 1972. Marine Technology Society. Washington. D.C.Google Scholar
  12. Conover, J.T., andSieburth, J.M. 1964. Effect ofSargassum distribution on its epibiota and antibacterial activity.Bot. Mar. 6:147–155.Google Scholar
  13. Corpe, W.A., Satsuuchi, L., Armbruster, B. 1976. Secretion of polymers and attachment of marine bacteria to surfaces, pp. 433–442,in J.M. Sharpley and A.M. Kaplan (eds.). Proceedings 3rd International Biodegradation Symposium. Applied Science Publications, London.Google Scholar
  14. Dagley, S., andNicholson, D.E. 1970. An Introduction to Metabolic Pathways. John Wiley & Sons, New York, 343 pp.Google Scholar
  15. Darley, W.M., Anlman, C.T., andWimpee, B.B. 1979. Utilization of dissolved organic carbon by natural populations of epibenthic salt marsh diatoms.J. Phycol. 15:1–5.Google Scholar
  16. Fenical, W., Okuda, R.K., Bandurraga, M.M., Culver, P., andJacobs, R.S. 1981. Lophotoxin: a novelneuromuscular toxin from Pacific sea whips of the genusLophogorgia.Science 212:1512–1514.Google Scholar
  17. Filion-Myklebust, C., andMorton, T.A. 1981. Epidermis shedding in the brown seaweedAscophyllum nodosum (L.) Le Jolis, and its ecological significance.Mar. Biol. Lett. 2:45–51.Google Scholar
  18. Fuller, J.L. 1946. Season of attachment and growth of sedentary marine organisms at Lamoine, Maine.Ecology87:150–158.Google Scholar
  19. Gasteiger, E.L., Gergen, J., andHaake, P. 1955. A study of the distribution of homarine (N-methyl picolinic acid).Biol. Bull. 109:345–346.Google Scholar
  20. Geiselman, J.A., andMcConnell, O.J. 1981. Polyphenols in the brown algaeFucus vesiculosus andAscophyllum nodosum: Chemical defenses against the marine herbivorous snail,Littorina littorea.J. Chem. Ecol. 7:1115–1134.Google Scholar
  21. Graham, H.W., andGray, H. 1945. Season of attachment and growth of sedentary marine organisms at Oakland, California.Ecology 26:375–386.Google Scholar
  22. Grigg, R.W. 1977. Population dynamics of two gorgonian corals.Ecology 58:278–290.Google Scholar
  23. Guillard, R.R.L., andRyther, J.H. 1962. Studies on marine planktonic diatoms I.Cyclotella nana Hustedt andDetonula confervacea (Cleve.) Gran.Can. J. Microbiol. 8:229–239.Google Scholar
  24. Halstead, B.W. 1965. Poisonous and Venomous Marine Animals of the World, Vol. 1. U.S. Government Printing Office, Washington, D.C., 994 pp.Google Scholar
  25. Harrison, P.G., andChan, A.T. 1980. Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves.Mar. Biol. 61:21–26.Google Scholar
  26. Kato, T.,Kumanireng, A.S.,Ichinose, I.,Kitahara, Y.,Kakinuma, Y., andKato, Y. 1975a. Structure and synthesis of active component from a marine alga,Sargassum tortile, which induces the settling of swimming larvae ofCoryne uchida. Chem. Lett. 335–338.Google Scholar
  27. Kato, T., Kumanireng, A.S., Ichinose, I., Kitahara, Y., Kakinuma, Y., Nishihara, M., andKato, M. 1975b. Active components ofSargassum tortile affecting the settlement of swimming larvae ofCoryne uchidai.Experientia 31:433–434.Google Scholar
  28. Kinzie, R.A., III. 1973. Zonation of West Indian gorgonians.Bull. Mar. Sci. 22:93–155.Google Scholar
  29. Lehninger, A.L. 1970. Biochemistry. Worth Publishers, New York, 833 pp.Google Scholar
  30. Marszalek, D.J., Gerehakov, J.M., andUdey, L.R. 1979. Influence of substrate composition or marine microfouling.App. Environ. Microbiol. 38:987–995.Google Scholar
  31. McLachlan, J., andCraigie, J.S. 1964. Algal inhibition by yellow ultraviolet-absorbing substances fromFucus vesiculosus.Can. J. Bot. 42:287–292.Google Scholar
  32. McLachlan, J., andCraigie, J.S. 1966. Antialgal activity of some simple phenols.J. Phycol. 2:133–135.Google Scholar
  33. Ogden, J.C., andLobel, P.S. 1978. The role of herbivorous fishes and urchins in coral reef communities.Environ. Biol. Fish. 3:49–63.Google Scholar
  34. O'Neil, T. B., andWilcox, G. L. 1971. The formation of a “primary film” on materials submerged in the sea at Port Hueneme, California,Pac. Sci. 25:1–12.Google Scholar
  35. Osman, R.W. 1977. The establishment and development of a marine epifaunal community.Ecol. Monogr. 47:37–63.Google Scholar
  36. Patton, W.K. 1972. Studies on the animal symbionts of the gorgonian coral,Leptogorgia virgulata (Lamarck).Bull. Mar. Sci. 22:419–413.Google Scholar
  37. Perkins, D.L., andCiereszko, L.S. 1973. The environmental toxicity of crassin acetate usingTetrahymena pyriformis as a model.Hydrobiologica 42:77–84.Google Scholar
  38. Preston, E.M., andPreston, J.L. 1975. Ecological structure in a West Indian gorgonian fauna.Bull. Mar. Sci. 25:248–258.Google Scholar
  39. Schmitz, F.J., andLorance, E.D. 1971. Chemistry of coelenterates. XXI. Lactones from the gorgonianPterogorgia guadalupensis.J. Org. Chem. 36:719–721.Google Scholar
  40. Sieburth, J.M. 1968. The influence of algal antibiosis on the ecology of marine organisms, pp. 63–94,in M.R. Droop and E.J.F. Woods (eds.). Advances in Microbiology of the Sea, Vol. 1. Academic Press, New York.Google Scholar
  41. Sieburth, J.M. 1975. Microbial Seascapes. University Park Press, Baltimore.Google Scholar
  42. Sieburth, J.M., andConover, J.T. 1965.Sargassum tannin, an antibiotic which retards fouling.Nature 208:52–53.Google Scholar
  43. Sokal, R.R., andRohlf, F.J. 1969. Biometry. W.H. Freeman and Co. San Francisco, 776 pp.Google Scholar
  44. Stoecker, D. 1978. Resistance of a tunicate to fouling.Biol. Bull. 155:615–626.Google Scholar
  45. Sullivan, M.J. 1978. Diatom community structure: Taxonomic and statistical analyses of a Mississippi salt march.J. Phycol. 14:468–475.Google Scholar
  46. Tursch, B. 1976. Some recent developments in the chemistry of alcyonaceans.Pure Appl. Chem. 48:1–6.Google Scholar
  47. Tursch, B., Braekman, J.C., Daloze, D., andKaisin, M. 1978. Terpenoids from coelenterates. pp. 247–296,in P.J. Scheuer (ed.). Marine Natural Products, Vol. II. Academic Press, New York.Google Scholar
  48. Vadas, R.L. 1977. Preferential feeding: An optimization strategy in sea urchins.Ecol. Monogr. 47:337–371.Google Scholar
  49. Weinheimer, A.J., andMatson, J.A. 1975. Crassin acetate, the principal antineoplastic agent in four gorgonians of thePseudoplexaura genus.Lloydia 38:378–382.Google Scholar
  50. Weinheimer, A.J.,Washecheck, P.H., van derHelm, D.,Bilayet-Hossain, M. 1968. The sesquiterpene hydrocarbons of the gorgonian,Pseudoterogorgia americana, the noniso-prenoid-gorgonene,Chem. Commun. 1070–1071.Google Scholar
  51. Weinheimer, A.J., Metzner, E.K., andMole, M.L., Jr. 1973. A new marine betaine, noorzooanemonin, in the gorgonianPseudopterogorgia americana.Tetrahedron 29:3135–3136.Google Scholar
  52. Weinheimer, A.J.,Matson, J.A., van derHelm, D., andPoling, M. 1977. Marine anticancer agents: Asperdiol, a cembranoid from the gorgonians,Eunicea asperula andE. tourneforti. Tetrahedron Lett. 1295–1298.Google Scholar
  53. Welsh, J.H., andProck, P.B. 1958. Quaternary ammonium bases in the coelenterates.Biol. Bull. 115:551–561.Google Scholar
  54. Williams, R.B. 1962. The ecology of diatom populations in a Georgia salt marsh. PhD dissertation, Harvard University, Cambridge, Massachusetts.Google Scholar
  55. Williams, R.B. 1964. Division rates of salt marsh diatoms in relation to salinity and cell size.Ecology 45:877–880.Google Scholar
  56. Wood, E.J.F. 1950. Investigations on underwater fouling.Aust. J. Mar. Freshwater Res. 1:85–91.Google Scholar
  57. Yentsch, C., andMenzel, D.W. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence.Deep-Sea Res. 10:221–231.Google Scholar
  58. Young, L.Y. andMitchell, R. 1973. The role of chemotactic responses in primary film formation, pp. 617–624,in R.F. Acker, B.F. Brown. J.R. DePalma, and W. P. Iverson (eds.). Proceedings 3rd International Congress on Marine Corrosion and Fouling. Northwestern University Press, Evanston, Illinois.Google Scholar
  59. Zapata, O., andMcmillan, C. 1979. Phenolic acids in seagrasses.Aquat. Bot. 7:307–317.Google Scholar
  60. Zar, J.H. 1974. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 620 pp.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • N. M. Targett
    • 1
  • S. S. Bishop
    • 1
  • O. J. McConnell
    • 1
  • J. A. Yoder
    • 1
  1. 1.Skidaway Institute of OceanographySavannah

Personalised recommendations