Journal of Chemical Ecology

, Volume 6, Issue 3, pp 609–623 | Cite as

Chemical ionization mass spectrometry

Application to insect-derived cuticular alkanes
  • Ralph W. Howard
  • C. A. McDaniel
  • Dennis R. Nelson
  • Gary J. Blomquist


GC-CI-MS is shown to be the method of choice for determining the molecular weight of every component in complex alkane mixtures such as those found on insect cuticle. It also provides branch point information. The technique was applied to a number of normal and methyl-branched synthetic alkanes, as well as to the hydrocarbons from the termiteReticulitermes flavipes (Kollar), the cricketGryllus pennsylvanicus Burmeister, and the beetleLasioderma serricorne (Fabricius).

Key words

Methyl-branched alkanes dimethyl-branched alkanes paraffins chemical ionization mass spectra molecular ions molecular weight 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, J.E., Sukkestad, D.R., Nelson, D.R., andFatland, C.L. 1980. Cuticular lipids of larvae and adults of the cigarette beetle,Lasioderma serricorne.Insect Biochem. 9:603–611.Google Scholar
  2. Blomquist, G.J., Blailock, T.T., Scheetz, R.W., andJackson, L.L. 1976. Cuticular lipids of insects—VII. Cuticular hydrocarbons of the cricketsAcheta domesticus, Gryllus pennsylvanicus, andNemobius fasciatus.Comp. Biochem. Physiol. 54B:381–386.Google Scholar
  3. Field, F.H. 1968. Chemical ionization mass spectrometry.Accounts Chem. Res. 1:42–49.Google Scholar
  4. Field, F. H., Munson, M.S.B., andBecker, D.A. 1966. Chemical ionization mass spectrometry. Paraffin hydrocarbons, pp. 167–192in R.F. Gould (ed.), Advances in Chemistry, Series 58. American Chemical Society, Washington, D.C.Google Scholar
  5. Gelpi, E., andOró, J. 1967. Chemical ionization mass spectrometry of pristane.Anal. Chem. 39(3):388–389.Google Scholar
  6. Howard, R.W., McDaniel, C.A., andBlomquist, G.J. 1973. Cuticular hydrocarbons of the eastern subterranean termiteReticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae).J. Chem. Ecol. 4(2):233–245.Google Scholar
  7. Hunt, D.F., andHarvey, T.M. 1975. Nitric oxide chemical ionization mass spectra of alkanes.Anal. Chem. 47(12):1965–1969.Google Scholar
  8. Jackson, L.L., andBlomquist, G.J. 1976. Insect waxes, pp. 201–233, in P.E. Kolattukudy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam.Google Scholar
  9. Munson, M.S.B., andField, F.H. 1966. Chemical ionization mass spectrometry. I. General introduction.J. Am. Chem. Soc. 88(12):2621–2630.Google Scholar
  10. Nelson, D.R. 1978. Long-chain methyl-branched hydrocarbons: occurrence, biosynthesis, and function.Adv. Insect Physiol. 13:1–33.Google Scholar
  11. Nelson, D.R., andSukkestad, D.R. 1975. Normal and branched alkanes from cast skins of the grasshopperSchistocerca vaga (Scudder).J. Lipid Res. 16:12–18.PubMedGoogle Scholar
  12. Scammells, D.V., andHickmott, B. 1976. Diagnostic trends in the mass spectra of some mono methyl alkanes.Org. Mass Spectrose 11:901–903.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Ralph W. Howard
    • 1
  • C. A. McDaniel
    • 2
  • Dennis R. Nelson
    • 3
  • Gary J. Blomquist
    • 4
  1. 1.U. S. Department of AgricultureForest Service, Forestry Sciences LaboratoryGulfport
  2. 2.U.S. Department of Agriculture, Animal and Plant Health Inspection ServiceNational Monitoring and Residue Analysis LaboratoryGulfpon
  3. 3.U.S. Department of AgricultureMetabolism and Radiation Research Laboratory Agriculture Research, Science and Education AdministrationFargo
  4. 4.Department of BiochemistryUniversity of Nevada-RenoReno

Personalised recommendations