Molecular Biology Reports

, Volume 19, Issue 3, pp 195–200 | Cite as

Regulation of protein synthesis by mRNA structure

  • Nicola K. Gray
  • Mattias W. Hentze
Special Issue: Protein Synthesis

Abstract

In addition to the m7G cap structure, the length of the 5′ UTR and the position and context of the AUG initiator codon (which have been discussed elsewhere in this volume), higher order structures within mRNA represent a critical parameter for translation. The role of RNA structure in translation initiation will be considered primarily, although structural elements have also been found to affect translation elongation and termination. We will first describe the different effects of higher order RNA structuresper se, and then consider specific examples of RNA structural elements which control translation initiation by providing binding sites for regulatory proteins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kozak M (1986) Proc. Natl. Acad. Sci. USA 83: 2850–2854PubMedGoogle Scholar
  2. 2.
    Pelletier J & Sonenberg N (1985) Cell 40: 515–526PubMedGoogle Scholar
  3. 3.
    Kozak M (1989) Mol. Cell. Biol. 9: 5134–5142PubMedGoogle Scholar
  4. 4.
    Lawson TG, Ray BK, Dodds, JT, Abramson RD, Merrick WC, Betsch DF, Weith HL & Thach RE (1986) J. Biol. Chem. 261: 13979–13989PubMedGoogle Scholar
  5. 5.
    Pelletier J & Sonenberg N (1985) Mol. Cell. Biol. 5: 3222–3230PubMedGoogle Scholar
  6. 6.
    Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC & Sonenberg N (1990) Mol. Cell. Biol. 10: 1134–1144PubMedGoogle Scholar
  7. 7.
    Koromilas, AE, Lazaris-Karatzas A & Sonenberg N (1992) EMBO J. 11: 4153–4150PubMedGoogle Scholar
  8. 8.
    Hiremath LS, Webb NR & Rhoads RE (1985) J. Biol. Chem. 260: 7843–7849PubMedGoogle Scholar
  9. 9.
    Duncan R, Milburn SC & Hershey JWB (1987) J. Biol. Chem. 262: 380–388PubMedGoogle Scholar
  10. 10.
    Merrick WC (1992) Microbiol. Rev. 56: 291–315PubMedGoogle Scholar
  11. 11.
    Lazaris-Karatzas A, Montine KS & Sonenberg N (1990) Nature 345: 544–547PubMedGoogle Scholar
  12. 12.
    Smith MR, Jaramillo M, Liu Y, Dever TE, Merrick WC, Kung H & Sonenberg N (1990) New Biol. 2: 648–654PubMedGoogle Scholar
  13. 13.
    Rosenwald IB, Lazaris-Karatzas A, Sonenberg N & Schmidt EV (1993) Mol. Cell Biol. 13: 7358–7363PubMedGoogle Scholar
  14. 14.
    Gulyas KD & Donahue TF (1992) Cell 69: 1031–1042PubMedGoogle Scholar
  15. 15.
    Yoon H, Miller SP, Pabich EK & Donahue TF (1992) Genes & Dev. 6: 2463–2477Google Scholar
  16. 16.
    Altmann M, Müller PP, Wittmer B, Ruchti F, Lanker S & Trachsel H (1993) EMBO J. 12: 3997–4003PubMedGoogle Scholar
  17. 17.
    Bootsma D & Hoeijmakers JHJ (1993) Nature 363: 114–115PubMedGoogle Scholar
  18. 18.
    Kozak M (1991) J. Biol. Chem. 266: 19867–19870PubMedGoogle Scholar
  19. 19.
    Rao CD, Pech M, Robbins KC & Aaronson SA (1988) Mol. Cell. Biol. 8:284–292PubMedGoogle Scholar
  20. 20.
    Grens A & Scheffler IE (1990) J. Biol. Chem. 265: 11810–11816PubMedGoogle Scholar
  21. 21.
    Manzella JM & Blackshear PJ (1990) J. Biol. Chem. 265: 11817–11822PubMedGoogle Scholar
  22. 22.
    Johannes G & Berger FG (1992) J. Biol. Chem. 267: 10108–10115PubMedGoogle Scholar
  23. 23.
    Ito K, Kashiwagi K, Watanabe S, Kameji T, Hayashi S & Igarashi K (1990) J. Biol. Chem. 265: 13036–13041PubMedGoogle Scholar
  24. 24.
    Spena A, Krause E & Dobberstein B (1985) EMBO J. 4: 2153–2158Google Scholar
  25. 25.
    Kozak M (1990) Proc. Natl. Acad. Sci. USA 87: 8301–8305PubMedGoogle Scholar
  26. 26.
    Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A, Harford JB & Klausner RD (1987) Science 238: 1570–1573PubMedGoogle Scholar
  27. 27.
    Aziz N & Munro HN (1987) Proc. Natl. Acad. Sci. USA 84: 8478–8482PubMedGoogle Scholar
  28. 28.
    Melefors Ö, Goossen B, Johansson HE, Stripecke R, Gray NK & Hentze MW (1993) J. Biol. Chem. 268: 5974–5978PubMedGoogle Scholar
  29. 29.
    Klausner RD, Rouault T & Harford JB (1993) Cell 72: 19–28PubMedGoogle Scholar
  30. 30.
    Gray NK, Quick S, Goossen B, Constable A, Hirling H, Kühn LC & Hentze MW (1993) Eur. J. Biochem. 218: 657–667PubMedGoogle Scholar
  31. 31.
    Goossen B & Hentze MW (1992) Mol. Cell. Biol. 12: 1959–1966PubMedGoogle Scholar
  32. 32.
    Stripecke R & Hentze MW (1992) Nucl. Acids Res. 20: 5555–5564PubMedGoogle Scholar
  33. 33.
    Chu E, Voeller D, Koeller DM, Drake JC, Takimoto CH, Maley GF, Maley F & Allegra CJ (1993) Proc. Natl. Acad. Sci. USA 90: 517–521PubMedGoogle Scholar
  34. 34.
    Chu E, Takimoto CH, Voeller D, Grem JL & Allegra CJ (1993) Biochemistry 32: 4756–4760PubMedGoogle Scholar
  35. 35.
    Kuhn R, Kuhn C, Borsch D, Glätzer KH, Schäfer U & Schäfer M (1991) Mech. Dev. 35: 143–151PubMedGoogle Scholar
  36. 36.
    Amaldi F, Bozzoni I, Beccari E & Pierandrei-Amaldi P (1989) Trends Biochem. 14: 175–178Google Scholar
  37. 37.
    Levy S, Avni D, Hariharan N, Perry RP & Meyuhas O (1991) Proc. Natl. Acad. Sci. USA 88: 3319–3323PubMedGoogle Scholar
  38. 38.
    Kaspar RL, Kakegawa T, Cranston H, Morris DR & White MW (1992) J. Biol. Chem. 267: 508–514PubMedGoogle Scholar
  39. 39.
    Hammond ML, Merrick W & Bowman LH (1991) Genes & Dev. 5: 1723–1736Google Scholar
  40. 40.
    Cardinali B, Di Cristina M & Pierandrei-Amaldi P (1993) Nucl. Acids Res. 21: 2301–2308PubMedGoogle Scholar
  41. 41.
    Fleming J, Thiele BJ, Chester J, O'Prey J, Janetzki S, Aitken A, Anton IA, Rapoport SM & Harrison PR (1989) Gene 79: 181–188PubMedGoogle Scholar
  42. 42.
    Ostareck-Lederer A, Ostareck DH, Standart N & Theile BJ (1994) EMBO 13: 1476–1481Google Scholar
  43. 43.
    Goodwin EB, Okkema PG, Evans TC & Kimble J (1993) Cell 75: 329–339PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Nicola K. Gray
    • 1
  • Mattias W. Hentze
    • 1
  1. 1.Gene Expression ProgrammeEuropean Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations