Skip to main content
Log in

The hnRNP proteins

  • Special Issue: Structure And Function Of Eukaryotic RNPs
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Conclusions

The isolation of hnRNP complexes has identified many new proteins and their characterization has led to the identification of several motifs that are important for RNA binding. These motifs are present in a wide variety of proteins including splicing factors, ribosomal proteins, and several proteins of unknown function. These findings have blurred the lines of demarcation between proteins previously thought of as RNA “packaging” proteins and RNA processing factors. Recent findings on hnRNP proteins have suggested a plethora of possible functions along the pathway of mRNA metabolism. It can be expected that the next few years will see the unraveling of the detailed functions of hnRNP proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dreyfuss G, Matunis MJ, Piñol-Roma S & Burd C (1993) Annu Rev. Biochem. 62: 289–321

    Google Scholar 

  2. Piñol-Roma S, Choi YD, Matunis MJ & Dreyfuss G (1988) Genes & Dev. 2: 215–227

    Google Scholar 

  3. Görlach M, Wittekind M, Beckman RA, Mueller L & Dreyfuss G (1990) EMBO J. 11: 3289–3295

    Google Scholar 

  4. Buvoli M, Cobianchi F, Biamonti G & Riva S (1990) Nucl. Acids Res. 18: 6595–6600

    Google Scholar 

  5. Merrill BM, Stone KL, Cobianchi F, Wilson SH & Williams (1988) J. Biol. Chem. 263: 3307–3313

    Google Scholar 

  6. Matunis EL, Matunis MJ & Dreyfuss G (1993) J. Cell Biol. 121: 219–228

    Google Scholar 

  7. Bennett M, Piñol-Roma S, Staknis D, Dreyfuss G & Reed R (1992) Mol. Cell. Biol. 12: 3165–3175

    Google Scholar 

  8. Choi YD & Dreyfuss G (1984) J. Cell Biol. 99: 1997–2004

    Google Scholar 

  9. Leser GP, Escara-Wilke J & Martin TE (1984) J. Biol. Chem. 259: 1827–1833

    Google Scholar 

  10. Piñol-Roma S, Swanson MS, Gall JG & Dreyfuss G (1989) J. Cell Biol. 109: 2575–2587

    Google Scholar 

  11. Piñol-Roma S & Dreyfuss G (1992) Nature 355: 730–732

    Google Scholar 

  12. Matunis MJ, Matunis EL & Dreyfuss G (1992) J. Cell Biol. 116: 245–255

    Google Scholar 

  13. Haynes SR, Raychaudhuri G & Beyer AL (1990) Mol. Cell. Biol. 10: 316–323

    Google Scholar 

  14. Haynes SR, Johnson D, Raychaudhuri G & Beyer AL (1990) Nucl. Acids Res. 19: 25–31

    Google Scholar 

  15. Matunis EL, Matunis MJ & Dreyfuss G (1992) J. Cell Biol. 116: 257–269

    Google Scholar 

  16. Anderson JT, Wilson SM, Datar KV & Swanson MS (1993) Mol. Cell. Biol. 13: 2730–2741

    Google Scholar 

  17. Siomi H, Matunis MJ, Michael WM & Dreyfuss, G (1993) Nucl. Acids Res. 21: 1193–1198

    Google Scholar 

  18. Bandziulis RJ, Swanson MS & Dreyfuss G (1989) Genes Dev. 3: 431–437

    Google Scholar 

  19. Query CC, Bentley RC & Keene JD (1989) Cell 57: 89–101

    Google Scholar 

  20. Kenan DJ, Query CC & Keene JD (1991) Trends Biochem. Sci. 16: 214–220

    Google Scholar 

  21. Mattaj IW (1989) Cell 57: 1–3

    Google Scholar 

  22. Ghetti A, Piñol-Roma S, Michael WM, Morandi C & Dreyfuss G (1992) Nucl. Acids Res. 20: 3671–3678

    Google Scholar 

  23. Datar KV, Dreyfuss G & Swanson MS (1993) Nucl. Acids Res. 21: 439–446

    Google Scholar 

  24. Scherly D, Boelens W, Dathan NA, Venrooij WJ & Mattaj IW (1990) Nature 345: 502–506

    Google Scholar 

  25. Lutz-Freyermuth, C, Query CC & Keene JD (1990) Proc. Natl. Acad. Sci. USA 87: 6393–6397

    Google Scholar 

  26. Nagai K (1992) Curr. Opin. Struct. Biol. 2: 131–137

    Google Scholar 

  27. Burd C, Matunis EL & Dreyfuss G (1991) Mol. Cell. Biol. 7: 3419–3424

    Google Scholar 

  28. Nietfeld W, Mentzel H & Pieler T (1990) EMBO J. 9: 3699–3705

    Google Scholar 

  29. Nagai K, Oubridge C, Jessen TH, Li J & Evans PR (1990) Nature 346: 515–520

    Google Scholar 

  30. Hoffman DW, Query CC, Golden BW, White SW & Kenne JD (1991) Proc. Natl. Acad. Sci. USA 88: 2495–2499

    Google Scholar 

  31. Wittekind M, Görlach M, Friedrichs M, Dreyfuss G & Mueller L (1992) Biochemistry 31: 6254–6265

    Google Scholar 

  32. Jessen T-H, Oubridge C, Teo CH, Pritchard C & Nagai K (1991) EMBO J. 10: 3447–3456

    Google Scholar 

  33. Burd CG, Swanson MS & Dreyfuss G (1989) Proc. Natl. Acad. Sci. USA 86: 9788–9792

    Google Scholar 

  34. Kiledjian M & Dreyfuss G (1992) EMBO J. 11: 2655–2664

    Google Scholar 

  35. Fournier MJ & Maxwell ES (1993) Trends Biochem. Sci. 18: 131–135

    Google Scholar 

  36. Tollervey D, Lehtonen H, Jansen R, Kern H & Hurt EC (1993) Cell 72: 443–457

    Google Scholar 

  37. Ghisolfi L, Joseph G, Amalric F & Erard M (1992) J. Biol. Chem. 267: 2955–2959

    Google Scholar 

  38. Gibson TJ, Thompson JD & Heninger J (1993) FEBS Lett. (in press)

  39. Saraste M, Sibbald PR & Wittinghofer A (1990) Trends Biochem. Sci. 15: 430–434

    Google Scholar 

  40. Rinke-Appel J, Jünke N, Stade K, Brimacombe R (1991) EMBO J. 10: 2195–2202

    Google Scholar 

  41. Nandabalan K, Price L & Roeder GS (1993) Cell 73: 407–415

    Google Scholar 

  42. Beyer AL, Christensen ME, Walker BW & LeStourgeon WM (1977) Cell 11: 127–138

    Google Scholar 

  43. Wilk HE, Werr H, Friedrick D, Kiltz HH & Schäfer KP (1985) Eur. J. Biochem. 46: 71–81

    Google Scholar 

  44. Holcomb ER & Friedman DL (1984) J. Biol. Chem. 259: 31–40

    Google Scholar 

  45. Dreyfuss G, Choi YD & Adam SA (1984) Mol. Cell. Biol. 4: 1104–1114

    Google Scholar 

  46. Mitchell PJ & Tjian R (1989) Science 245: 371–378

    Google Scholar 

  47. Kumar A, Casas-Finet JR, Luneau CJ, Karpel RL, Merrill BM, Williams KR & Wilson SH (1990) J. Biol. Chem. 265: 17094–17100

    Google Scholar 

  48. Cobianchi F, Karpel RL, Williams KR, Notario V & Wilson SH (1988) J. Biol. Chem. 263: 1063–1071

    Google Scholar 

  49. Ren R, Mayer BJ, Cicchetti P & Baltimore D (1993) Science 259: 1157–1161.

    Google Scholar 

  50. Parry DAD & Steiner PA (1992) Curr. Opin. Cell Biol. 4: 94–98

    Google Scholar 

  51. LeStourgeon WM, Barnett SF & Northington (1990) In: Struss PR & Wilson SH (Ed) The Eukaryotic Nucleus: Molecular Biochemistry & Macromolecular Assemblies (pp. 477–502) Caldwell, NJ, Telford

    Google Scholar 

  52. Barnett SF, Friedman DL & LeStourgeon WM (1989) Mol. Cell. Biol. 9: 492–498

    Google Scholar 

  53. Choi YD, Grabowski PJ, Sharp PA & Dreyfuss G (1986) Science 231: 1534–1539

    Google Scholar 

  54. Sierakowska H, Szer HW, Furdon PJ & Kole R (1986) Nucl. Acids Res. 14: 5241–5254

    Google Scholar 

  55. Mayeda A & Krainer AR (1992) Cell 68: 365–375

    Google Scholar 

  56. Ge H, Zuo P & Manley JL (1991) Cell 66: 373–382

    Google Scholar 

  57. Krainer AR, Mayeda A, Kozak D & Binns G (1991) Cell 66: 383–394

    Google Scholar 

  58. Kelley R (1993) Genes Dev. (in press)

  59. Karsch-Mizrachi I & Haynes SR (1993) Nucl. Acids Res. 21: 2229–2235

    Google Scholar 

  60. Ben-David Y, Bani MR, Chabot B, De Koven A & Bernstein A (1992) Mol. Cell. Biol. 12: 4449–4455

    Google Scholar 

  61. Gil A, Sharp PA, Jamison SF, Garcia-Blanco M & (1991) Genes Dev. 5: 1224–1236

    Google Scholar 

  62. Patton JG, Mayer SA, Tempst P & Nadal-Ginard B (1991) Genes Dev. 5: 1237–1251

    Google Scholar 

  63. Brunel F, Alzari PM, Ferrara P, Zakin MM (1991) Nucl. Acids Res. 19: 5237–5245

    Google Scholar 

  64. Patton JG, Porro EB, Galceran J, Tempst P & Nadal-Ginard B (1993) Genes Dev. 7: 393–406

    Google Scholar 

  65. Swanson MS & Dreyfuss G (1988) EMBO J. 11: 3519–3529

    Google Scholar 

  66. Pontius BW & Berg P (1990) Proc. Natl. Acad. Sci. USA 87: 8403–8407

    Google Scholar 

  67. Kumar A & Wilson SH (1990) Biochemistry 29: 10717–10722

    Google Scholar 

  68. Munroe SH & Dong XF (1992) Proc. Natl. Acad. Sci. USA 89: 895–899

    Google Scholar 

  69. Cobianchi F, Calvio C, Stoppini M, Buvoli M & Riva S (1993) Nucl. Acids Res. 21: 949–955

    Google Scholar 

  70. Buvoli M, Cobianchi F & Riva S (1992) Nucl. Acids Res. 20: 5017–5025

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Görlach, M., Burd, C.G., Portman, D.S. et al. The hnRNP proteins. Mol Biol Rep 18, 73–78 (1993). https://doi.org/10.1007/BF00986759

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00986759

Key words

Navigation