Advertisement

Meccanica

, Volume 30, Issue 6, pp 685–705 | Cite as

Kinematics of single-loop mechanisms and serial robot arms: A systematic approach

  • Pietro Fanghella
Article
  • 91 Downloads

Abstract

This paper presents a systematic approach, based on displacement group properties, to the kinematic analysis of spatial linkages with one closed loop and to the solution of the inverse kinematic problem for robot manipulators. By using the proposed approach, a set of kinematic chains can be determined such that a first closure equation with one unknown can be derived directly and explicitly. Then the remaining closure equations are obtained: it is proved that they can be expressed in triangular form. The basic algorithms used to solve these equations in closed form are also presented. For each algorithm, the conditions of applicability, the initial information required, the results, the type and form of equations, and the maximum number of solutions are given. The proposed approach is well suited to the symbolic explicit solution of the inverse kinematic problem of a wide range of robut mechanisms. An example of its application is given.

Key words

Single loop mechanisms Robotics Kinematics Mechanics of machines 

Sommario

Il lavoro presenta un appreceio sistematico, basato sulle proprietà dei gruppi di spostamento, all'analisi cinematica di posizione di meccanismi spaziali ad una maglia e alla cinematica inversa di robot manipolatori seriali. L'approccio consente di determinare un insieme di catene cinematiche per le quali può essere scritta e risolta direttamente una prima equazione di chiusura in una sola incognita. Viene successivamente dimostrato esaustivamente che, per tali catene, le successive equazioni di chiusura possono essere espresse e risolte in forma triangolare. Inoltre sono presentati gli algoritmi di base utilizzabili per la soluzione del problema posto. Per ciascuno di essi sono dati: le condizioni di applicabilità, l'informazione iniziale richiesta, i risultati ottenuti, il tipo e la forma delle equazioni e il massimo numero di soluzioni possibili. L'approccio presentato è utilizzabile per la soluzione simbolica esplicita, manuale o automatica, di un esteso insieme di meccanismi per robot. Viene dato un esempio di uso del metodo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gupta, V.K., ‘Kinematic analysis of plane and spatial mechanisms’,ASME Journal of Engineering for Industry,95 (1973) 481–486.Google Scholar
  2. 2.
    Litvin, F.L., ‘Simplification of the matrix method of linkage analysis by division into unclosed kinematic chains’,Mechanism and Machine Theory,10 (1975) 315–326.Google Scholar
  3. 3.
    Hiller, M., and Woerlne, C., ‘A systematic approach for solving the inverse kinematic problem of robot manipulators’,Proceedings of the 7th IFToMM World Congress on the Theory of Machines and Mechanisms, Pergamon,1 (1987) pp. 215–221.Google Scholar
  4. 4.
    Andrez, E., Losco, L., Andre, P., and Taillard, J.P., ‘Génération automatique et simplification des équations littérales des systemès mécaniques articulés’,Mechanism and Machine Theory,20 (1985) 199–208.Google Scholar
  5. 5.
    Herrera-Bendezu, L., Mu, E., and Cain, J., ‘Symbolic computation of robot manipulator kinematics’,Proceedings of the IEEE International Conference on Robotics and Automation, (1988) pp. 993–998.Google Scholar
  6. 6.
    Tsai, M., and Chiou, Y., ‘Symbolic equation generation for manipulators’,Advanced Robotics, Waldron, K. (ed), Springer-Verlag (1989).Google Scholar
  7. 7.
    Halperin, D., ‘Automatic kinematic modelling of robot manipulators and symbolic generation of their inverse kinematics solutions’,Advanced in Robot Kinematics, Stifter, S., and Lenarcie, J. (eds), Springer-Verlag (1991) pp. 310–317.Google Scholar
  8. 8.
    Rieseler, H., Schrake, H., and Wahl, F., ‘Symbolic computation of closed form solutions with prototype equations’,Advances in Robot Kinematics, Stifter, S., and Lenarcic, J. (eds), Springer-Verlag (1991) pp. 343–351.Google Scholar
  9. 9.
    Hervè, J., ‘Analyse structurelle des mécanismes par groupe des déplacements’,Mechanism and Machine Theory,13 (1978) 437–450.Google Scholar
  10. 10.
    Fanghella, P., ‘Kinematics of spatial linkages by group algebra. A structure-based approach’,Mechanism and Machine Theory,23 (1988) 171–183.Google Scholar
  11. 11.
    Fanghella, P., and Galletti, C., “Particular or general methods in robot kinematics?’,Mechanism and Machine Theory,24 (1989) 383–394.Google Scholar
  12. 12.
    Fanghella, P., and Galletti, C., ‘Mobility analysis of single-loop kinematic chains: an algorithmic approach based on displacement groups’,Mechanism and Machine Theory,29 (1994) 1187–1204.Google Scholar
  13. 13.
    Galletti, C., ‘A note on modular approaches to planar linkage kinematic analysis’,Mechanism and Machine Theory,21 (1986) 385–391.Google Scholar
  14. 14.
    Fanghella, P., and Galletti, C., ‘Metric relations and displacement groups in mechanism and robot kinematics’,ASME Journal of Mechanical Design (1995), in press.Google Scholar
  15. 15.
    Fanghella, P., and Galletti, C., ‘An approach to symbolic kinematics of multiloop robot mechanisms’,Proceedings of the 9th CISM-IFToMM Symposium on the Theory and Practice of Robot Manipulators, Udine (1992), in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Pietro Fanghella
    • 1
  1. 1.Istituto di Meccanica Applicata alle MacchineUniversità di GenovaGenovaItaly

Personalised recommendations