Plant Systematics and Evolution

, Volume 192, Issue 1–2, pp 79–97 | Cite as

Floral structure and evolution of primitive angiosperms: Recent advances

  • Peter K. Endress


Concepts of primitive angiosperm flowers have changed in recent years due to new studies on relic archaic groups, new paleobotanical finds and the addition of molecular biological techniques to the study of angiosperm systematics and evolution.Magnoliidae are still the hot group, but emphasis is now on small primitive flowers with few organs and also on the great lability of organ number. Of the extant groups, a potential basal position of the paleoherbs has been discussed by some authors. Although some paleoherbs have a simple gynoecium with a single orthotropous ovule, anatropous ovules may still be seen as plesiomorphic in angiosperms. Anatropy is not necessarily a consequence of the advent of closed carpels. It may also exhibit biological advantages under other circumstances as is the case in podocarps among gymnosperms. Valvate anthers have now been found in most larger subgroups of theMagnoliidae (recently also in paleoherbs) and in some Cretaceous fossils. Nevertheless, as seen from its systematic distribution, valvate dehiscence is not necessarily plesiomorphic for the angiosperms, but may be a facultative by-product of the thick connectives and comparatively undifferentiated anther shape inMagnoliidae and lowerHamamelididae. A perianth is relatively simple in extantMagnoliidae or even wanting in some families. In groups with naked flowers the perianth may have been easily lost because integration in the floral architecture was less pronounced than in more advanced angiosperm groups. Problems with the comparison of paleoherb flowers with those ofGnetales are discussed. The rapid growth of information from paleobotany and molecular systematics requires an especially open attitude towards the evaluation of various hypotheses on early flower evolution in the coming years.

Key words

Angiosperms paleoherbs Magnoliidae Gnetales Floral evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arber, E. A. N., Parkin, J., 1908: Studies on the evolution of the angiosperms. The relationship of the angiosperms to theGnetales. — Ann. Bot.22: 489–515.Google Scholar
  2. Bernhardt, P., Thien, L. B., 1987: Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. — Pl. Syst. Evol.156: 159–176.Google Scholar
  3. Bertin, R. I., Newman, C. M., 1993: Dichogamy in angiosperms. — Bot. Rev.59: 112–152.Google Scholar
  4. Bouman, F., 1971: Integumentary studies in thePolycarpicae I.Lactoridaceae. — Acta Bot. Neerl.20: 565–569.Google Scholar
  5. Burger, W. C., 1978: ThePiperales and the monocots. Alternative hypotheses for the origin of monocotyledonous flowers. — Bot. Rev.43: 345–393.Google Scholar
  6. Carlquist, S., 1964: Morphology and relationships ofLactoridaceae. — Aliso5: 421–435.Google Scholar
  7. —, 1990: Wood anatomy and relationships ofLactoridaceae. — Amer. J. Bot.77: 1498–1504.Google Scholar
  8. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Qiu, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q.-Y., Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H. Jr.,Graham, S. W., Barrett, S. C. H., Dayanandan, S., Albert, V. A., 1993: Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. — Ann. Missouri Bot. Gard.80: 528–580.Google Scholar
  9. Cornet, B., 1989: The reproductive morphology and biology ofSanmiguelia lewisii, and its bearing on angiosperm evolution in the Late Triassic. — Evol. Trends Pl.3: 25–51.Google Scholar
  10. Crane, P. R., 1985: Phylogenetic analysis of seed plants and the origin of angiosperms. — Ann. Missouri Bot. Gard.72: 716–793.Google Scholar
  11. —, 1988: Major clades and relationships in the “higher” gymnosperms. — InBeck, C. B., (Ed.): Origin and evolution of gymnosperms, pp. 218–272. — New York: Columbia University Press.Google Scholar
  12. —, 1989: Reproductive structure and function in CretaceousChloranthaceae. — Pl. Syst. Evol.165: 211–226.Google Scholar
  13. —, 1993: Early Cretaceous (Early to Middle Albian) platanoid inflorescences associated withSapindopsis and leaves from the Potomac Group of eastern North America. — Syst. Bot.18: 328–344.Google Scholar
  14. Crawford, D. J., Stuessy, T. F., Silva, O. M., 1986: Leaf flavonoid chemistry and the relationships of theLactoridaceae. — Pl. Syst. Evol.153: 133–139.Google Scholar
  15. Crepet, W. L., Friis, E. M., Nixon, K. C., 1991: Fossil evidence for the evolution of biotic pollination. — Phil. Trans. Roy. Soc. LondonB 333: 187–195.Google Scholar
  16. —, 1992: Oldest fossil flowers of hamamelidaceous affinity, from the Late Cretaceous of New Jersey. — Proc. Natl. Acad. Sci. USA89: 8986–8989.Google Scholar
  17. Delpino, F., 1890: Applicazione di nuovi criterii per la classificazione delle piante. Terza memoria. — Mem. R. Accad. Sci. Ist. Bologna, Ser. IV,10: 565–599.Google Scholar
  18. Dickison, W. C., 1992: Morphology and anatomy of the flower and pollen ofSaruma henryi Oliv., a phylogenetic relict of theAristolochiaceae. — Bull. Torrey Bot. Club119: 392–400.Google Scholar
  19. Dilcher, D. L., 1989: The occurrence of fruits with affinities toCeratophyllaceae in Lower and mid-Cretaceous sediments. — Amer. J. Bot.76 (6, Abstr.): 162.Google Scholar
  20. —, 1992: The concept of the flower and its most primitive expression. Abstr. of the Katherine Esau International Symposium—Plant structure: concepts, connections, and challenges. — Davis: University of California.Google Scholar
  21. Donoghue, M. J., Doyle, J. A., 1989: Phylogenetic analysis of angiosperms and the relationships ofHamamelidae. — InCrane, P. R., Blackmore, S., (Eds): Evolution, systematics, and fossil history of theHamamelidae, 1, pp. 17–45. — Oxford: Clarendon Press.Google Scholar
  22. Doyle, J., 1945: Developmental lines in pollination mechanisms in theConiferales. — Sci. Proc. Roy. Dublin Soc.24: 43–62.Google Scholar
  23. Doyle, J. A., 1994: Origin of the angiosperm flower: a phylogenetic perspective. — Pl. Syst. Evol. [Suppl.] (in press).Google Scholar
  24. —, 1986a: Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. — Bot. Rev.52: 321–431.Google Scholar
  25. —, 1986b: Relàtionships of angiosperms andGnetales: a numerical cladistic analysis. — InSpicer, R. A., Thomas, B. A., (Eds): Systematic and taxonomic approaches in palaeobotany, pp. 177–198. — Oxford: Clarendon Press.Google Scholar
  26. —, 1992: Fossils and seed plant phylogeny reanalyzed. — Brittonia44: 89–106.Google Scholar
  27. —, 1993: Phylogenies and angiosperm diversification. — Paleobiol.19: 141–167.Google Scholar
  28. —, 1976: Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. — InBeck, C. B., (Ed.): Origin and early evolution of angiosperms, pp. 139–206. — New York: Columbia University Press.Google Scholar
  29. —, 1991: Diversification of early angiosperm pollen in a cladistic context. — InBlackmore, S., Barnes, S. H., (Eds): Pollen and spores, pp. 169–195. — Oxford: Clarendon Press.Google Scholar
  30. —, 1990: Early Cretaceous tetrads, zonasulcate pollen, andWinteraceae. II. Cladistic analysis and implications. — Amer. J. Bot.77: 1558–1568.Google Scholar
  31. Drinnan, A. N., Crane, P. R., Friis, E. M., Pedersen, K. R., 1990: Lauraceous flowers from the Potomac Group (mid-Cretaceous) of eastern North America. — Bot. Gaz.151: 370–384.Google Scholar
  32. Duvall, M. R., Clegg, M. T., Chase, M. W., Clark, W. D., Kress, W. J., Hills, H. G., Eguiarte, L. E., Smith, J. F., Gaut, B. S., Zimmer, E. A., Learn, G. H. Jr., 1993: Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. — Ann. Missouri Bot. Gard.80: 607–619.Google Scholar
  33. Ehrendorfer, F., 1971:Spermatophyta, Samenpflanzen. — InDenffer, D., Schumacher, W., Mägdefrau, K., Ehrendorfer, F., (Eds): “Strasburger”, Lehrbuch der Botanik für Hochschulen, 30th edn, pp. 584–741. — Stuttgart: Fischer.Google Scholar
  34. Endress, P. K., 1980: Floral structure and relationships ofHortonia (Monimiaceae). — Pl. Syst. Evol.133: 199–221.Google Scholar
  35. —, 1986: Reproductive structures and phylogenetic significance of extant primitive angiosperms. — Pl. Syst. Evol.152: 1–28.Google Scholar
  36. —, 1987a: Floral phyllotaxis and floral evolution. — Bot. Jahrb. Syst.108: 417–438.Google Scholar
  37. —, 1987b: TheChloranthaceae: reproductive structures and phylogenetic position. — Bot. Jahrb. Syst.109: 153–226.Google Scholar
  38. —, 1990a: Patterns of floral construction in ontogeny and phylogeny. — Biol. J. Linn. Soc.39: 153–175.Google Scholar
  39. —, 1990b: Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). — Mem. New York Bot. Gard.55: 5–34.Google Scholar
  40. —, 1993:Federico Delpino and early views on angiosperm origin and macroevolution. — Dissertationes Botanicae196: 77–83. — Berlin: Cramer.Google Scholar
  41. —, 1994a: Major evolutionary traits of monocot flowers. — InCutler, D. F., Rudall, P., (Eds): The Monocotyledons. — Kew: Royal Botanical Gardens (in press).Google Scholar
  42. - 1994b: Evolutionary aspects of the floral structure inCeratophyllum. — Pl. Syst. Evol. [Suppl.] (in press).Google Scholar
  43. —, 1994c: Shapes, sizes, and evolutionary trends in stamens ofMagnoliidae. — Bot. Jahrb. Syst.115: 429–460.Google Scholar
  44. —, 1989: The diversity of stamen structures and dehiscence patterns amongMagnoliidae. — Bot. J. Linn. Soc.100: 45–85.Google Scholar
  45. Erbar, C., Leins, P., 1983: Zur Sequenz von Blütenorganen bei einigen Magnoliiden. — Bot. Jahrb. Syst.103: 433–449.Google Scholar
  46. - - 1994: Flowers inMagnoliidae and the origin of flowers in other subclasses of the angiosperms. I. The relationships between flowers ofMagnoliidae andAlismatidae. — Pl. Syst. Evol. [Suppl.] (in press).Google Scholar
  47. Friedman, W. E., 1990: Double fertilization inEphedra, a nonflowering seed plant: its bearing on the origin of angiosperms. — Science247: 951–954.Google Scholar
  48. Friis, E. M., Endress, P. K., 1990: Origin and evolution of angiosperm flowers. — Adv. Bot. Res.17: 99–162.Google Scholar
  49. —, 1991: Stamen diversity and in situ pollen of Cretaceous angiosperms. — InBlackmore, S., Barnes, S. H., (Eds): Pollen and spores. Patterns of diversification, pp. 197–224. — Oxford: Clarendon Press.Google Scholar
  50. Gottsberger, G., 1988: The reproductive biology of primitive angiosperms. — Taxon37: 630–643.Google Scholar
  51. —, 1992: Diversität der Bestäubung und Reproduktionsbiologie von ursprünglichen Angiospermen. — Stapfia28: 11–27.Google Scholar
  52. Herendeen, P. S., Crepet, W. L., Nixon, K. C., 1993:Chloranthus-like stamens from the Upper Cretaceous of New Jersey. — Amer. J. Bot.80: 865–871.Google Scholar
  53. Heslop-Harrison, Y., Shivanna, K. R., 1977: The receptive surface of the angiosperm stigma. — Ann. Bot.41: 1233–1258.Google Scholar
  54. Hufford, L. D., Endress, P. K., 1989: The diversity of anther structures and dehiscence patterns amongHamamelididae. — Bot. J. Linn. Soc.99: 301–346.Google Scholar
  55. Ito, M., 1987: Phylogenetic systematics of theNymphaeales. — Bot. Mag. (Tokyo)100: 17–35.Google Scholar
  56. Johri, B. M., Ambegaokar, K. B., Srivastava, P. S., 1992: Comparative embryology of angiosperms.1. — Berlin: Springer.Google Scholar
  57. Kubitzki, K., 1993a: Introduction. — InKubitzki, K., Rohwer, J. G., Bittrich, V., (Eds): The families and genera of vascular plantsII, pp. 1–12. — Berlin: Springer.Google Scholar
  58. —, 1993b:Lactoridaceae. — InKubitzki, K., Rohwer, J. G., Bittrich, V., (Eds): The families and genera of vascular plantsII, pp. 359–361. — Berlin: Springer.Google Scholar
  59. Lammers, T. G., Stuessy, T. F., Silva, O. M., 1986: Systematic relationships of theLactoridaceae, an endemic family of the Juan Fernandez Islands, Chile. — Pl. Syst. Evol.152: 243–266.Google Scholar
  60. Lehmann-Baerts, M., 1967: Etudes sur les Gnétales—VIII. Ontogenèse ovulaire chezGnetum africanum etEphedra distachya. — Cellule66: 313–327.Google Scholar
  61. Leins, P., Erbar, C., 1985: Ein Beitrag zur Blütenentwicklung der Aristolochiaceen, einer Vermittlergruppe zu den Monokotylen. — Bot. Jahrb. Syst.107: 343–368.Google Scholar
  62. —, 1991: Entwicklungsmuster in Blüten und ihre mutmaßlichen phylogenetischen Zusammenhänge. — Biol. Uns. Zeit21: 197–204.Google Scholar
  63. Leroy, J.-F., 1993: Origine et évolution des plantes à fleurs. Les Nymphéas et le génie de la nature. — Paris: Masson.Google Scholar
  64. Les, D. H., 1988: The origin and affinities of theCeratophyllaceae. — Taxon7: 326–345.Google Scholar
  65. —, 1993:Ceratophyllaceae. — InKubitzki, K., Rohwer, J. G., Bittrich, V., (Eds): The families and genera of vascular plantsII, pp. 246–250. — Berlin: Springer.Google Scholar
  66. —, 1991: Molecular evolutionary history of ancient aquatic angiosperms. — Proc. Natl Acad. Sci. USA88: 10119–10123.Google Scholar
  67. —, 1992a: A phylogeny of the ancient genusCeratophyllum (Ceratophyllaceae) derived from DNA sequence data. — Amer. J. Bot.79 (6, Abstr.): 151.Google Scholar
  68. —, 1992b: Molecular evidence for the phylogenetic position of the enigmatic island endemicLactoris fernandeziana (Lactoridaceae). — Amer. J. Bot.79 (6, Abstr.): 152.Google Scholar
  69. Liang, H.-X., Tucker, S. C., 1989: Floral development inGymnotheca chinensis (Saururaceae). — Amer. J. Bot.76: 806–819.Google Scholar
  70. —, 1990: Comparative study of the floral vasculature inSaururaceae. — Amer. J. Bot.77: 607–623.Google Scholar
  71. Lloyd, D. G., Webb, M. S., 1992: Reproductive biology of a primitive angiosperm,Pseudowintera colorata (Winteraceae), and the evolution of pollination systems in theAnthophyta. — Pl. Syst. Evol.181: 77–95.Google Scholar
  72. Loconte, H., Stevenson, D. W., 1990: Cladistics of theSpermatophyta. — Brittonia42: 197–211.Google Scholar
  73. —, 1991: Cladistics of theMagnoliidae. — Cladistics7: 267–296.Google Scholar
  74. Martens, P., 1971: Les Gnétophytes. — InZimmermann, W., Carlquist, S., Ozenda, P., Wulff, H. D., (Eds): Handbuch der Pflanzenanatomie, 2nd edn. Spezieller Teil,XII (2). — Berlin: Borntraeger.Google Scholar
  75. Meeuse, A. D. J., 1963: From ovule to ovary: a contribution to the phylogeny of the megasporangium. — Acta Biotheor.16: 127–182.Google Scholar
  76. —, 1974: The inner integument—its probable origin and homology. — Acta Bot. Neerl.23: 237–249.Google Scholar
  77. Moseley, M. F. Jr.,Mehta, I. J., Williamson, P. S., Kosakai, H., 1984: Morphological studies of theNymphaeaceae (sensu lato). XIII. Contributions to the vegetative and floral structure ofCabomba. — Amer. J. Bot.71: 902–924.Google Scholar
  78. Neumayer, H., 1924: Die Geschichte der Blüte. — Abh. Zool.-Bot. Ges. Wien14 (1): 1–112.Google Scholar
  79. Nikiticheva, Z. I., 1981: Embryological features of somePiperales. — Acta Soc. Bot. Polon.50: 329–332.Google Scholar
  80. —, 1981: The development of the ovule, embryo sac, and endosperm in the species ofPeperomia (Piperaceae). — Bot. Ž. (Moscow & Leningrad)66: 1388–1398.Google Scholar
  81. Nixon, K. C., Crepet, W. L., Stevenson, D., Friis, E. M., 1994: A reevaluation of seed plant phylogeny. — Ann. Missouri Bot. Gard.81 (in press).Google Scholar
  82. Nozeran, R., 1955: Contribution à l'étude de quelques structures florales. — Ann. Sci. Nat. Bot., Sér. 11,16: 1–224.Google Scholar
  83. Ørgaard, M., 1991: The genusCabomba (Cabombaceae)—a taxonomic study. — Nordic J. Bot.11: 179–203.Google Scholar
  84. Pedersen, K. R., Crane, P. R., Drinnan, A. N., Friis, E. M., 1991: Fruits from the mid-Cretaceous of North America with pollen grains of theClavatipollenites type. — Grana30: 577–590.Google Scholar
  85. Pellmyr, O., 1992: Evolution of insect pollination and angiosperm diversification. — Trends Ecol. Evol.7: 46–49.Google Scholar
  86. Philipson, W. R., 1993:Amborellaceae. — InKubitzki, K., Rohwer, J. G., Bittrich, V., (Eds): The families and genera of vascular plantsII, 92–93. — Berlin: Springer.Google Scholar
  87. Qiu, Y.-L., Chase, M. W., Les, D. H., Parks, C. R., 1993: Molecular phylogenetics of theMagnoliidae: a cladistic analysis of nucleotide sequences of the plastid gene rbcL. — Ann. Missouri Bot. Gard.80: 587–606.Google Scholar
  88. Retallack, G., Dilcher, D. L., 1981: Arguments for a glossopterid ancestry of angiosperms. — Paleobiology7: 54–67.Google Scholar
  89. Schneider, E. L., 1978: Morphological studies of theNymphaeaceae. IX. The seed ofBarclaya longifolia Wall. — Bot. Gaz.139: 223–230.Google Scholar
  90. —, 1982: Morphological studies of theNymphaeaceae. XII. The floral biology ofCabomba caroliniana. — Amer. J. Bot.69: 1410–1419.Google Scholar
  91. Schöffel, K., 1932: Untersuchungen über den Blütenbau der Ranunculaceen. — Planta17: 315–371.Google Scholar
  92. Sehgal, A., Mohan Ram, H. Y., 1981: Comparative developmental morphology of two populations ofCeratophyllum L. (Ceratophyllaceae) and their taxonomy. — Bot. J. Linn. Soc.82: 383–456.Google Scholar
  93. Shamrov, I. I., 1983: Anthecological investigation of three species of the genusCeratophyllum (Ceratophyllaceae). — Bot. Ž. (Moscow & Leningrad)68: 1357–1365.Google Scholar
  94. Skottsberg, C., 1953: The natural history of Juan Fernandez and Easter Island2. — Uppsala: Almqvist & Wiksell.Google Scholar
  95. Sugawara, T., 1987: Taxonomic studies ofAsarum sensu lato III. Comparative floral anatomy. — Bot. Mag. (Tokyo)100: 335–348.Google Scholar
  96. Takaso, T., Bouman, F., 1986: Ovule and seed ontogeny inGnetum gnemon L. — Bot. Mag. (Tokyo)99: 241–266.Google Scholar
  97. Taylor, D. W., 1991: Angiosperm ovules and carpels: their characters and polarities, distribution in basal clades, and structural evolution. — Postilla208: 1–40.Google Scholar
  98. —, 1990: An Aptian plant with attached leaves and flowers: implications for angiosperm origin. — Science247: 702–704.Google Scholar
  99. —, 1992: Phylogenetic evidence for the herbaceous origin of angiosperms. — Pl. Syst. Evol.180: 137–156.Google Scholar
  100. Tobe, H., Stuessy, T. F., Raven, P. H., Oginuma, K., 1993: Embryology and karyomorphology ofLactoridaceae. — Amer. J. Bot.80: 933–946.Google Scholar
  101. Tomlinson, P. B., 1991: Pollen scavenging. — Natl. Geogr. Res. Explor.7: 188–195.Google Scholar
  102. —, 1992: Aspects of cone morphology and development inPodocarpaceae (Coniferales). — Int. J. Pl. Sci.153: 572–588.Google Scholar
  103. —, 1991: Pollination drop in relation to cone morphology inPodocarpaceae: a novel reproductive mechanism. — Amer. J. Bot.78: 1289–1303.Google Scholar
  104. Tucker, S. C., 1984: Origin of symmetry in flowers. — InWhite, R. A., Dickison, W. C., (Eds): Contemporary problems in plant anatomy, pp. 351–395. — Orlando: Academic Press.Google Scholar
  105. —, 1985: Initiation and development of inflorescence and flower inAnemopsis californica (Saururaceae). — Amer. J. Bot.72: 20–31.Google Scholar
  106. -Bourland, J. A., 1994: Ontogeny of staminate and carpellate flowers ofSchisandra glabra (Schisandraceae). — Pl. Syst. Evol. [Suppl.] (in press).Google Scholar
  107. Weberling, F., 1970: Weitere Untersuchungen zur Morphologie des Unterblattes bei den Dikotylen. V.Piperales. — Beitr. Biol. Pfl.46: 403–434.Google Scholar
  108. Wettstein, R., 1907: Handbuch der systematischen Botanik2, 1st edn. — Leipzig: Deuticke.Google Scholar
  109. Winter, A. N., 1993: Some aspects of the reproductive biology ofHydrostemma longifolium (Barclaya longifolia) (Barclayaceae). — Bot. Ž. (St. Petersburg)78 (1): 69–83.Google Scholar
  110. Wolf, M., 1991: Blütenphyllotaxis vonNymphaeaceae: Ist das Androecium vonNymphaea, Nuphar etc. spiralig? 10. Symposium Morphologie, Anatomie und Systematik, Göttingen, Abstr.: 85.Google Scholar
  111. Zavada, M. S., Taylor, T. N., 1986: Pollen morphology ofLactoridaceae. — Pl. Syst. Evol.154: 31–39.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Peter K. Endress
    • 1
  1. 1.Institute of Systematic Botany, UniversityZürichSwitzerland

Personalised recommendations